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In the social sciences, education, and medicine, tests and 
scales are often used for selection, such as to find the best 
candidates for a job, identify students with a minimum level 
of achievement, or determine which respondents need fur-
ther psychological assessment. This article describes meth-
ods that apply to any selection scenario, but we frame our 
discussion using the example of screening measures: short 
assessments used to identify respondents who may have 
psychiatric disorders. Typically, scale item responses are 
summed (X *; e.g., Achenbach & Rescorla, 2000; Allison 
et al., 2012), and then, a decision is made by comparing a 
respondent’s summed score X * to a cutpoint, Xc

* (Pepe, 
2003). When scores are used to make decisions about indi-
viduals, it is critical to ensure that the selection process is 
accurate and consistent (American Educational Research 
Association [AERA] et al., 2014).

Classification accuracy (CA) refers to the probability of 
correctly assigning a respondent to the correct group. CA is 
measured as the agreement between the decision based on 
the summed scores and a reference class, representing the 
true condition of the respondent (e.g., a decision determined 
by a gold standard or true scores; Lee, 2010). Accurate clas-
sification supports the valid use of tests for decision-making 
(Lathrop, 2015). For example, suppose that a clinician 
administers the AQ10 (Autism Spectrum Quotient; Allison 

et al., 2012), and the respondent is referred for further diag-
nostic assessment for autism spectrum disorders if their 
score is above a cutpoint. The AQ10 would have high CA if 
it correctly distinguishes individuals who are likely to be 
diagnosed with autism spectrum disorder from those who 
are not.

Beyond accuracy, classification consistency (CC) refers 
to the probability that a respondent would receive the same 
classification across repeated administrations of the mea-
sure (Gonzalez et al., 2021; Lee, 2010; Livingston & Lewis, 
1995). The concept of CC is similar to the test–retest reli-
ability of a classification (Haertel, 2006; Lathrop, 2015). 
For the example above, the AQ10 would yield inconsistent 
classifications if a respondent is above the cutpoint today, 
but they would have been below the cutpoint if they would 
have received the assessment tomorrow. Note that CC 
assumes that there is no change in the respondents’ level of 
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the construct (e.g., via maturation, practice effects, carry-
over effects, or treatment effects) between the administra-
tions of the measure—the only factor that affects the change 
in classification is measurement error (Gonzalez et al., 
2021). There are many ways to estimate CA and CC from 
measures (Deng, 2011), but in this article, we focus on esti-
mates based on latent variable models.

Recently, model-based estimates using item response 
theory (IRT) have been used to provide estimates of CA and 
CC in educational and psychiatric settings (e.g., Gonzalez 
et al., 2021; Gonzalez & Pelham, 2021; Lathrop & Cheng, 
2013; Lee, 2010). These IRT-based methods fall short for 
three reasons. First, many researchers (e.g., clinical psy-
chologists) are more familiar with the linear factor model 
than IRT models. Reise and Waller (2009) note that IRT 
models are the exception instead of the norm to analyze 
clinical assessments, although this is changing. Second, 
although most scales in the social sciences have discrete 
responses, some items may have continuous response 
scales, which are incompatible with IRT models. Examples 
of scales with continuous response scales include items 
whose response format is a continuous line segment, a 
visual analog scale, or time to complete task (Mellenbergh, 
2017). Also, items that have many response categories 
(Thissen et al., 1983), such as those found in the European 
Social Survey (Davidov et al., 2008), may be treated as con-
tinuous. Third, for several reasons, investigators may prefer 
to analyze items with discrete response scales as though 
they are continuous, using the linear factor model 
(Beauducel & Herzberg, 2006; Jorgensen & Johnson, 2022; 
Li, 2016; Muthén & Kaplan, 1985; Rhemtulla et al., 2012). 
For instance, they may be unfamiliar with IRT, have limited 
sample sizes for accurate parameter estimation, or prefer a 
simpler model (e.g., the linear factor model has three 
parameters per item, and the number of parameters per item 
for IRT models depends on the number of response catego-
ries; Thissen, 2017). In the area of screening, examples of 
widely-used scales that have discrete item responses but are 
often treated as continuous include the Center of 
Epidemiologic Studies–Depression (CES-D) scale (e.g., 
Carleton et al., 2013) and the K6 scales (e.g., Bessaha, 
2017). Thus, to fully realize the benefit of IRT-based 
advances for estimating CA and CC, these methods must be 
extended to the linear factor analysis framework.

There has been limited work on the estimation of CA in 
situations in which item responses are treated as continu-
ous. Examples include Millsap and Kwok (2004), who 
showed how one can translate the parameters of a linear 
factor model into estimates of sensitivity and specificity to 
describe how well a measure classifies respondents, and Lai 
et al. (2017), who facilitated the implementation of these 
procedures with R code. In these two cases, however, the 
estimation of CC or the estimation of both CA and CC at 
specific levels of the latent construct were not discussed. 

Peng and Subkoviak (1980) also developed an approach to 
estimate CC that makes similar assumptions to our proce-
dure, but  they do not estimate CA or CC at specific levels 
of the latent construct. As such, there are two main contri-
butions of this article. First, we extend the IRT-based proce-
dure to estimate CA and CC (Gonzalez & Pelham, 2021; 
Lee, 2010) to handle responses that are treated as continu-
ous. Second, we investigate how treating discrete items as 
continuous (i.e., analyzing discrete items with the linear 
factor model) affects the estimation of CA and CC. These 
contributions are important because (1) they would facili-
tate and promote the estimation of CA and CC for users of 
the linear factor model and (2) they would help determine 
whether researchers who routinely fit linear factor models 
to discrete data can still obtain a rough approximation of 
CA and CC.

Present Study

The purpose of this study is to provide applied researchers 
with tools, based on the linear factor model, to estimate 
CA and CC when they use scales for decision-making. 
First, we define four indices of model-based CA and CC 
and explain how these indices are estimated. Then, we 
illustrate our method by applying it to published data on 
the K6 screener for psychological distress (Kessler et al., 
2003). Finally, we conduct a Monte Carlo simulation study 
to examine how CA and CC are affected when discrete 
items are analyzed as continuous. In the Supplemental 
Materials, we present R functions to conduct the proposed 
procedure with the linear factor model and a brief tutorial 
on how to use them.

Indices of CA and CC

Consider a hypothetical group of individuals who have 
identical latent variable scores η. At the item level, random 
measurement error would result in different observed item 
responses for these individuals, which in turn results in a 
distribution of possible sum scores X * for each level of η. 
We refer to this conditional summed score distribution as 
P X( )*|η  and some examples are depicted in the right panel 
of Figure 1. To estimate CA and CC, one needs P X( )*|η , 
which can be determined from an IRT model or a linear fac-
tor model. In the appendix, we explain how one can use 
estimates of the factor loadings, intercepts, and residual 
variances (e.g., item parameters) to determine P X( )*|η . 
The main takeaway of the appendix is that the linear factor 
model depends on the assumption that P X( )*|η  is normally 
distributed, while that distribution can be non-normal for 
IRT models. Therefore, the performance of our procedure 
depends on meeting this assumption.

Using P(X*|η), one can define four indices (Gonzalez 
et al., 2021; Lee, 2010):
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Figure 1. Left Panels: Summed Score Distribution Conditional on the Latent Variable (e.g., P X( | )* θ ) From an Item Response 
Theory Model. Right Panels: Summed Score Distribution Conditional on the Latent Variable From a Linear Factor Model (e.g., 
P(X*|η)). Note That the Range of the Scores is From 0 to 24.
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1. Conditional CA (CCA). The probability of making a 
correct decision based on X * at a specific value of 
η.

2. Conditional CC (CCC). The probability making the 
same decision based on X * across two parallel admin-
istrations of the measure at a specific value of η.

3. Marginal CA (MCA). Weighted average of CCA 
estimates across the range of η.

4. Marginal CC (MCC). Weighted average of CCA 
estimates across the range of η.

These four estimates range from 0 to 1, and higher values 
are better. Note that the four indices are specific to cutpoint 
c on X *, so that, different Xc

* will have different CA and 
CC values.

Conceptual Sketch of the Method and Relative 
Advantages

In this section, we provide a brief explanation of the proce-
dure to estimate CA and CC, which is most effective if the 
user is looking at the top right panel of Figure 1 while 
reading.

1. Estimate P(X*|η), as in the top right panel of Figure 
1, at one value of η.

2. For a cutpoint1 Xc
* , estimate the proportion of 

P(X*|η) at or above Xc
*, p1 , and below Xc

*, p2.
3. Estimate CCA by checking if the X * is above or 

below Xc
*. If X * ≥  Xc

*, CCA is p1 , else CCA is p2. 
To estimate CCC, add p p1

2
2
2+ .

4. Repeat Steps 1 to 3 for many more η values. 
Typically, η is normally distributed, so that, one can 
use equally spaced values between −2 and 2. These 
values are known as quadrature points.

5. Estimate the MCA and MCC by taking a weighted 
average of the CCA and CCC from the step above. 
The weights come from the quadrature points in 
Step 4 based on the height of the normal distribution 
(i.e., Gaussian quadrature), which are used to 
approximate the integral over η.

As mentioned above, the respondent’s η is considered 
fixed, so that, P(X*|η) quantifies the uncertainty of a respon-
dent’s X * at each level of η due to measurement error. In 
situations in which η is not expected to change, P(X*|η) 
provides a range of X * that we are likely to observe across 
repeated administrations. If model assumptions are met, 
this property facilitates the estimation of CC because a sin-
gle administration of the measure provides hypothetical 
information on test–retest performance, saving resources, 
and reducing participant burden (Gonzalez et al., 2021; Lee, 
2010).

Illustration: Application of the Method 
to Published Example

K6 Scale

The K6 is a screener used to study psychological distress in 
the population (Kessler et al., 2003). Psychological distress 
is defined by Drapeau et al. (2010) as a combination of 
depression and anxiety symptoms which indicate emotional 
ill-being. The K6 is a screener that assesses how frequently 
an individual experienced six symptoms in the past 30 days: 
sadness, nervousness, restlessness, hopelessness, worth-
lessness, and the feeling that everything was an effort. The 
response scale has five categories (0—none of the time, 4—
all the time), and an observed score X * is estimated by sum-
ming all the items. Observed scores X * �≥  13 have been 
found to identify participants with moderate psychological 
distress (Kessler et al., 2003).

For this illustration, we borrow the item parameters from 
the reference group reported in the study by Sunderland and 
colleagues (2012, Table 3) on the K6 scales. Data for the 
Sunderland et al. (2012) study were from the Australian 
National Survey of Mental Health and Well-being, and the 
item parameters come from a sample (N = 2,761) in which 
respondents were between the ages of 16 and 34, and 49.4% 
were women. We simulated 10,000 responses using the K6 
item parameters from the graded response model (GRM; 
Samejima, 1969), and a normally distributed latent variable 
score with a mean and variance of 1, N(1,1).2 It is important 
to note that the item thresholds were asymmetric (e.g., had 
a positive skew). Then, the data were analyzed with the lin-
ear factor model, the parameters were saved, and we esti-
mated CA and CC using quadrature points between −2 and 
2 in steps of .05 using the R functions presented in the 
Supplemental Materials. The purpose of the illustration is to 
demonstrate the estimation of CC and CA under the linear 
factor model approach and compare it to CA and CC refer-
ence values from an IRT model, which are the data-generat-
ing parameters (further described below). Previous findings 
suggest that when discrete item responses are analyzed with 
the linear factor model, the factor loadings are attenuated 
(Beauducel & Herzberg, 2006; Jorgensen & Johnson, 2022; 
Li, 2016; Rhemtulla et al., 2012). As such, we expect that 
those CA and CC estimates would be smaller than the esti-
mates from the IRT model because the relation between 
each item and the latent variable is underestimated.

Item Response Estimates of CA and CC as Reference Val-
ues. For our analyses, we use the CA and CC estimates 
from the IRT model as reference values because the proce-
dure based on the IRT model accounts for the discrete 
nature of the items. We know that the item response vari-
ables are in truth discrete because they were designed that 
way by the scale constructors. Thus, by definition, a model 
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parameterized to reflect the discrete response options is 
more accurate (“closer to the truth”) than a simpler model 
enforcing the assumptions of the linear factor model across 
item responses, which are not often tenable (e.g., model 
residuals are normally distributed; Wirth & Edwards, 2007). 
For this reason, both the illustration and simulation study 
consider the values from the IRT model as the reference 
case and evaluate to what extent an approach based on a 
simpler model (i.e., a linear factor model) produces similar 
results. As mentioned above, the CA and CC estimation 
require the item parameters, the cutpoint Xc

*, and the 
quadrature points. Sample size only plays a role in the pre-
cision of the item parameters, which is impacted by sam-
pling error. Therefore, we obtained the reference values 
from the IRT model by treating the K6 item parameters as 
population values, and the Xc

* and quadrature points as 
fixed, and we estimated CA and CC using the cacIRT 
R-package (Lathrop, 2015). Moreover, we simulated many 
responses (e.g., N=10,000), which are analyzed to obtain 
factor model estimates from the linear factor model with 
small sampling variability (i.e., small standard errors).

Results. The top panel of Figure 2 shows the relation between 
the latent variable score and the model-implied summed 
score under the IRT model and the linear factor model. 
Although the linear factor model provides a rough approxi-
mation to the relations found by the data-generating (item 
response) model, there areas in which the summed score 
implied by the linear factor model is higher or lower than the 
summed score implied b the item response model. In the 
simulated dataset, a K6 cut score of Xc

* ≥  13 selects roughly 
19% of the respondents. The θ value (i.e., the latent variable 
in the IRT model, analogous to η) that yields a model-
implied Xc

*= 13 is roughly θc  = .97, while the correspond-
ing η value is ηc = 1.06. Recall that the K6 parameters from 
the IRT model are treated as population values, and the high-
est standard error for an estimated parameter from the linear 
factor model was .014. The middle panel of Figure 2 shows 
the curves of the CCA estimates, and the MCA from the IRT 
model was .929 and for the linear factor model was .930. 
The bottom panel of Figure 2 shows the curves of the CCC 
estimates, and the MCC estimate from the IRT model was 
.902 and for the linear factor model was .900. Furthermore, 
we also examined the CA and CC estimates for Xc

* = 20, 
which roughly capture 3% of the individuals. The MCA for 
the IRT model was .980, while for the factor model was 
.992. On the other hand, the MCC for the IRT model was 
.973, while for the factor model was .988. It is likely that the 
MCA and MCC estimates were similar across approaches 
for Xc

* =  13 because of the conditional summed score distri-
butions in the regions around Xc

*—the expected mean rela-
tion is on the top of Figure 2, the Var (X*|η) has a constant 
value of 1.97, and the average Var (X*|θ) for θ > 0 is 2.18. 
For Xc

* =  20, the estimates might be similar because most of 

the respondents will be ruled out with Xc
* =  20 because it is 

close to maximum score on the K6 of 24, which in turn 
yields high CA and CC regardless of the shape of the condi-
tional summed score distribution. In this example, the CCA 
and CCC estimates differed but the linear factor model pro-
vided a close approximation to the MCA and MCC estimates 
from the data-generating model. As such, researchers who 
fit a linear factor model to K6 data (e.g., Bessaha, 2017) can 
obtain an approximate estimate of CA and CC even when 
items are analyzed as continuous.

Simulation Study

The goal of the simulation is to determine whether the 
MCA and MCC estimates from data-generating models 

Figure 2. Top: Test Characteristic Curves for the Item 
Response Theory Model and the Linear Factor Model. Middle: 
Conditional Classification Accuracy Curves at Cutpoint 13 
for the Item Response Theory Model and the Linear Factor 
Model. Bottom: Conditional Classification Consistency Curves 
at Cutpoint 13 for the Item Response Theory Model and the 
Linear Factor Model. For all Plots, Solid Lines Are for the Item 
Response Theory Model and Dashed Lines Are for the Linear 
Factor Model.
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with discrete items (Lee, 2010), MCAD  and MCCD , are 
approximated by the MCA and MCC estimates from the 
linear factor model, MCAC  and MCCC , at the population 
level. Recall that sampling variability does not affect our 
procedure per se (e.g., taking item parameters, determin-
ing conditional summed score distribution, imposing the 
cutpoint, and integrating results across η). Sampling error 
plays a role on the estimation of IRT model parameters or 
factor model parameters, which takes place prior to con-
ducting the procedure. Implicitly, users of the procedure 
assume that there is precise estimation of item/factor 
model parameters. 

To mimic common screening applications, discrete 
item responses to a unidimensional measure were gener-
ated, and IRT-based estimates are treated as the reference 
values as discussed above. Consistent with previous stud-
ies that factor loadings are underestimated when item 
response are discrete with a few categories (Beauducel & 
Herzberg, 2006; DiStefano, 2002; Jorgensen & Johnson, 
2022; Li, 2016; Muthén & Kaplan, 1985; Rhemtulla et al., 
2012; Thissen, 2017), we expect that as the number of 
items and number of response categories increase, the 
MCAC  and MCCC  estimates will be more similar to 
MCAD  and MCCD .

Data Generation

Data were simulated using an ordered-categorical unidi-
mensional factor model, similar to the simulations by 
Gonzalez and Pelham (2021). There are deterministic rela-
tions between the parameters from a categorical factor 
model and from the GRM (Wirth & Edwards, 2007), but we 
chose to simulate data from a categorical factor model 
because we believe that researchers would be more familiar 
with this metric. The factors varied were number of items 
(from 5 to 15), number of response categories (4, 5, 6, 7) per 
item (the lowest response category value was zero), and the 
distribution of the thresholds (symmetric or asymmetric). In 
total, there were 88 conditions, with N = 20,000 simulated 
cases generated per condition to mitigate the effect of sam-
pling variability. The latent variable score was drawn from 
a standard normal distribution. The unique scores on each 
item were multivariate-normally distributed with means of 
zero, variances of one minus the communality of the item, 
and uncorrelated with each other and with the latent vari-
able. The standardized item factor loadings per condition 
were equally spaced between 0.30 and 0.90, and the item 
thresholds were either symmetrically spaced from a stan-
dard normal distribution (i.e., evenly divided, with limits of 
−2.5 and 2.5) or asymmetrically spaced (i.e., the peak of the 
distribution fell to the left of the mean; moderately asym-
metric condition), using the values provided by Rhemtulla 
et al (2012, see supplemental materials). After item 
responses were generated, a summed score for each 

respondent was computed, and the observed cutpoint Xc
*� 

was half the maximum possible summed score in each con-
dition (e.g., in a condition with seven items with five 
response categories, the maximum score is 28, so that, the 
cutscore was ≥  14, selecting the top 50% of respondents), 
which corresponds roughly with the mean of the latent vari-
able score. In the Supplemental Materials, we extend our 
simulation and present results for conditions that select the 
top 10% and top 25% of the respondents and also report 
MCC estimates using the Peng and Subkoviak (1980) 
procedure.

Data Analysis

The discrete item responses were analyzed with the linear 
factor model, parameters were saved, and the functions pro-
vided in the Supplemental Materials were used to estimate 
MCAC  and MCCC . We used the cacIRT package with popu-
lation item parameters to estimate the MCAD  and MCCD. 
For both approaches, we used quadrature points between –2 
and 2 in steps of .05 and normalized quadrature weights. 
The MCAD  and MCCD  were then compared to MCAC  and 
MCCc  using the tabled values and by estimating the root 
mean-squared difference (RMSD) and the relative mean 
difference (RMD), averaged across all conditions (see 
Tables S5–S10 in the Supplemental Materials for the raw 
difference and relative difference of estimates per condi-
tion). The RMSD was estimated by subtracting MCAD  and 
MCCD  from MCAC  and MCCc , respectively, squaring the 
difference, averaging all values, and finally taking the 
square root. The RMSD value would indicate the mean 
absolute difference between estimates. The RMD was esti-
mated by subtracting the MCAD  and MCCD  from MCAC  
and MCCc , respectively, then dividing by MCAD  and 
MCCD . A positive RMD value would indicate that MCAC  
and MCCc  overestimated MCAD  and MCCD , and a nega-
tive RMD value would indicate that MCAC  and MCCc  
underestimated MCAD  and MCCD .

Results of Simulation

Tables 1 and 2 show the MCAD , MCCD , MCAC , and MCCc  
as a function of the number of items, number of response 
categories, and whether thresholds were symmetric or 
asymmetric. For the conditions with symmetric thresholds, 
the largest MCAD  and MCAC  difference was .008 (in the 
condition of six items with five response categories), the 
RMSD was .004, and the RMD was .004. Except for the 
conditions with four response categories, MCAC  slightly 
overestimated MCAD , and as reflected by the positive 
RMSD and RMD. Furthermore, the largest MCCD  and 
MCCC  difference was .007 (in the condition of seven items 
with seven response categories), the RMSD was .004 and 
the RMD was .002, exhibiting similar patterns.
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For conditions with asymmetric thresholds, the largest 
MCAD  and MCAC  difference was .032 (in the condition of 
five items with four response categories), the RMSD was 
.010, and the RMD was .010. Across conditions, MCAC  
slightly overestimated MCAD . Furthermore, the largest 
MCCD  and MCCC  difference was .025 (in the condition of 
five items with four response categories), the RMSD was 
.013, and the RMD was .013, and patterns similar to MCAC  
were observed. Across all conditions, there was not a clear 
pattern in the discrepancy across approaches, although this 
might be explained by the small differences between 
MCAD  and MCAC , and between MCCD  and MCCC across 
the board. Therefore, contrary to our hypotheses, ignoring 
the discrete nature of the items and fitting a linear factor 
model led to slightly larger, but similar MCAC  and MCCC  
estimates compared to MCAD  and MCCD , as reflected by 
the RMSD and RMD values.

In the Supplemental Materials, Tables S1 to S4 show the 
MCAD , MCCD , MCAC , and MCCc in conditions with Xc

* 
that select the top 25% and top 10% of respondents. Largely, 
we see that MCAC  and MCCc  overestimate MCAD  and 
MCCD , although the largest deficit is less than 4%. Note 
that MCAD , MCCD , MCAC , and MCCc  might be similar 

with these cutpoints because all the estimates are high 
regardless of the approach. In other words, most respon-
dents are in the same class and are therefore more likely to 
be correctly and consistently classified. We expect to 
observe similar relations with very high or very low Xc

*, 
regardless of the shape of P(X*|η). Moreover, Figure S1 in 
the Supplemental Materials shows that MCCc  is higher 
than the CC estimates from the Peng and Subkoviak (1980) 
procedure. Across conditions, the correlation of the esti-
mates across procedures ranged between r = .95 and .99.

Finally, we highlight two issues regarding cutpoints on X *. 
Recall that CA and CC depend on Xc

*. For the simulation,  
the MCAC  and MCCC  estimates were higher in the conditions 
with asymmetric thresholds than the conditions with symmetric 
thresholds, but these values cannot be directly compared. The 
Xc
*� was the same across both conditions, but the mass of the 
X * distribution shifted to the left because the item thresholds 
were asymmetric. As such, Xc

*� is located away from the mass 
of the distribution. Second, recall that the shapes of P(X*|η) 
for the linear factor model and the IRT model are slightly dif-
ferent (see Figure 1)—the conditional distribution for the lin-
ear factor model has a normal, smooth distribution that can 
take any value, while the conditional distribution for the IRT 

Table 1. Classification Accuracy Estimates for the Item Response Theory Model (in Regular Font) and the Linear Factor Model (in 
Bold Font) at a Cutpoint to Select the Top 50%.

# Items Approach

Symmetric thresholds Asymmetric thresholds

Response categories Response categories

4 5 6 7 4 5 6 7

5 True discrete 0.807 0.810 0.816 0.816 0.899 0.889 0.883 0.873
 Continuous 0.813 0.816 0.821 0.821 0.925 0.908 0.898 0.882
6 True discrete 0.824 0.823 0.828 0.829 0.893 0.901 0.906 0.885
 Continuous 0.823 0.831 0.831 0.833 0.911 0.916 0.921 0.893
7 True discrete 0.834 0.834 0.838 0.840 0.893 0.910 0.922 0.894
 Continuous 0.835 0.840 0.843 0.845 0.905 0.922 0.934 0.900
8 True discrete 0.844 0.843 0.847 0.848 0.911 0.917 0.921 0.900
 Continuous 0.844 0.847 0.850 0.853 0.925 0.928 0.932 0.905
9 True discrete 0.849 0.851 0.854 0.856 0.925 0.922 0.932 0.906

 Continuous 0.852 0.856 0.857 0.860 0.937 0.933 0.942 0.911
10 True discrete 0.859 0.858 0.862 0.862 0.922 0.927 0.930 0.911
 Continuous 0.858 0.862 0.865 0.866 0.933 0.937 0.939 0.915
11 True discrete 0.863 0.864 0.867 0.868 0.921 0.931 0.930 0.916
 Continuous 0.864 0.868 0.870 0.872 0.928 0.940 0.938 0.919
12 True discrete 0.870 0.869 0.872 0.873 0.930 0.934 0.937 0.919
 Continuous 0.868 0.873 0.874 0.877 0.939 0.941 0.945 0.923
13 True discrete 0.874 0.874 0.877 0.878 0.938 0.937 0.937 0.923
 Continuous 0.874 0.878 0.879 0.880 0.946 0.944 0.943 0.926
14 True discrete 0.879 0.878 0.881 0.882 0.936 0.940 0.942 0.926
 Continuous 0.878 0.880 0.884 0.885 0.943 0.947 0.948 0.929
15 True discrete 0.881 0.881 0.885 0.885 0.942 0.942 0.947 0.928
 Continuous 0.881 0.885 0.888 0.889 0.949 0.948 0.953 0.931
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model can be non-normal, is not smooth, and takes discrete 
values. Suppose that the cutpoint is at Xc

* =  13. Under the 
linear factor model, the next value higher than 13 with a given 
level of precision might be 13.0001 (or 13.00001, etc.), 
whereas for the IRT model, the next higher value is 14. The 
rounding when moving from a continuous model-implied X * 
to a discrete model-implied X * could introduce error that 
affects the precision of CA and CC, which in turn affects the 
comparisons. It is expected that the conditional distribution of 
X * for the IRT model becomes smoother as the number of 
items and response categories increase.

Discussion

When tests and scales are used for decision-making, it is 
important to describe the decision process using estimates 
of CA and CC (AERA et al., 2014). This article introduced 
an analytical procedure to estimate CA and CC for the lin-
ear factor model. The proposed extension used the rela-
tions presented by Millsap and Kwok (2004) to develop a 
procedure to estimate CA and CC, similar to the analytical 

procedure by Lee (2010) and a simulation-based procedure 
similar to Gonzalez et al. (2021). Our proposed extension 
addresses a gap in the literature by enabling researchers 
who work with continuous item responses or who treat 
their item responses as continuous to estimate model-based 
CA and CC. In general, our proposed extension facilitates 
the estimation of CA and CC from a linear factor model, 
when before the estimation of CA and CC was only avail-
able for IRT models. Moving forward, researchers can use 
our procedure to report estimates of CA and CC for mea-
sures used for screening, selection, and decision-making. 
Also, we presented an illustration that researchers could 
replicate using the Supplemental Materials. The results 
from both the illustration and the simulation study suggest 
that when researchers treat discrete items as continuous, 
the CA and CC estimates from the linear factor model 
could slightly overestimate the CA and CC from the data-
generating model where items are discrete. This difference 
would matter most in conditions with a few items (e.g., five 
or six items) and few response categories (e.g., four or five 
categories).

Table 2. Classification Consistency Estimates for the Item Response Theory Model (in Regular Font) and the Linear Factor Model (in 
Bold Font) at a Cutpoint to Select the Top 50%.

Symmetric thresholds Asymmetric thresholds

Response categories Response categories

# Items Approach 4 5 6 7 4 5 6 7

5 True discrete 0.744 0.746 0.754 0.750 0.860 0.845 0.836 0.822
 Continuous 0.743 0.747 0.754 0.753 0.892 0.868 0.855 0.833
6 True discrete 0.762 0.762 0.765 0.766 0.853 0.861 0.868 0.838
 Continuous 0.756 0.766 0.766 0.770 0.873 0.881 0.887 0.848
7 True discrete 0.780 0.775 0.777 0.779 0.850 0.873 0.890 0.850
 Continuous 0.772 0.778 0.782 0.785 0.866 0.889 0.906 0.858
8 True discrete 0.787 0.786 0.789 0.790 0.876 0.883 0.888 0.860
 Continuous 0.783 0.788 0.791 0.795 0.893 0.898 0.903 0.866
9 True discrete 0.796 0.796 0.799 0.800 0.895 0.890 0.903 0.869
 Continuous 0.794 0.800 0.801 0.805 0.911 0.905 0.918 0.874

10 True discrete 0.805 0.804 0.808 0.809 0.891 0.897 0.902 0.876
 Continuous 0.803 0.808 0.812 0.814 0.904 0.910 0.913 0.880
11 True discrete 0.814 0.812 0.816 0.816 0.889 0.902 0.901 0.882
 Continuous 0.811 0.815 0.819 0.821 0.898 0.914 0.911 0.886
12 True discrete 0.820 0.818 0.822 0.823 0.902 0.907 0.911 0.887
 Continuous 0.816 0.823 0.824 0.829 0.913 0.917 0.922 0.891
13 True discrete 0.826 0.824 0.829 0.829 0.913 0.911 0.911 0.892
 Continuous 0.823 0.829 0.831 0.832 0.923 0.920 0.919 0.895
14 True discrete 0.832 0.830 0.834 0.835 0.910 0.915 0.919 0.896
 Continuous 0.829 0.832 0.837 0.838 0.919 0.924 0.926 0.900
15 True discrete 0.837 0.835 0.838 0.839 0.919 0.918 0.925 0.900
 Continuous 0.834 0.839 0.843 0.845 0.927 0.925 0.933 0.903



Gonzalez et al. 9

From our simulation results, we can provide general guid-
ance for applied researchers using these methods. Whenever 
possible, we strongly recommend researchers to use latent 
variable models that match the response scale of the items. 
However, there might be instances in which researchers fit 
linear factor models to discrete items because that is the only 
latent variable model they know or because they do not have 
the sample size to estimate a model with more parameters. 
Simulation results suggest that model-based CA and CC 
from the linear factor model provide a reasonable approxima-
tion to the estimates from the data-generating model with 
discrete items if there are four response categories and thresh-
old skewness is not too extreme. In other words, estimates of 
CA and CC from a linear factor model fit to discrete items are 
similar enough to provide a sense of the accuracy and consis-
tency of the decision-making process.

The model-based estimates for CA and CC have several 
limitations. For example, our proposed procedure assumes 
that the measure is unidimensional and that the latent vari-
able model fits the measure well. A future direction would be 
to extend this procedure to handle multiple factors and to 
study its performance in the presence of model misspecifica-
tion or misfit (e.g., local dependence; Edwards et al., 2018). 
Furthermore, like other model-based estimates, the item 
parameters are treated as fixed for the estimation of CA and 
CC, but these item parameters are subject to sampling vari-
ability. When researchers use small sample sizes, the factor 
model parameters are not precise, and, our findings might 
not hold. A future direction would be to study how sampling 
variability and imprecise estimates of the factor model 
parameters or IRT model parameters impacts CA and CC. 
Finally, future research includes continuing to explore how 
CA and CC can quantify the impact of violations of mea-
surement invariance on the selection process (Gonzalez 
et al., 2021; Gonzalez & Pelham, 2021; Lai et al., 2017; 
Millsap & Kwok, 2004). Hundreds of invariance studies 
have been published in psychology, but much of this work 
fails to clarify the extent to which the use of such scales is 
impacted by the items that exhibit bias (e.g., Nye et al., 
2019). Furthermore, it is also unclear if the linear factor 
model can detect violations of invariance when fit to discrete 
items (e.g., Meade & Lautenschlager, 2004). As such, it 
would be important to investigate how the detection rate of 
noninvariance is reflected on the estimates of model-based 
CA and CC from linear models compared to IRT models. 
Overall, we encourage researchers to examine CA and CC in 
their measures using the methodology described in this arti-
cle in tandem with other psychometric indices.

Appendix: Using the Linear Factor 
Model to Compute P(X*|η)

Let Xij  be the observed score on item j of person i. 
When Xij  is continuous, the relationship between the 
observed score and the respondent’s standing on the 
latent variable ηi  could be described using the linear 
factor model:

 Xij j j i ij= + +τ λ η Σ .  (1)

where τ is the item intercept, λ is the factor loading, and 
Σij is the unique factor score for person i on item j. Recall 
that in many applied settings a summed score X * is used for 
decision-making. We can use Equation 1 to derive two 
properties of X * (Millsap & Kwok, 2004):
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where μx* is the model-implied mean of X *, Var (X*) is 
the model-implied variance of X *, κ is the mean of η, and 
Var(η) is the variance of η.

Using the preceding developments, we can determine 
P(X*|η), the conditional summed score distribution. Two 
approaches have been previously studied to determine that 
distribution for IRT models: analytically using the approach 
by Lee (2010) or empirically using the approach by 
Gonzalez et al. (2021). Here, we focus on extending the 
analytical approach by Lee (2010) to the linear factor 
model, and we discuss the empirical approach by Gonzalez 
et al. (2021) in the Supplemental Materials—both 
approaches tend to produce similar results (Gonzalez et al., 
2021). Millsap and Kwok (2004) indicated that P(X*|η) is 
normally distributed, so that, we can characterize P(X*|η) 
analytically using the conditional mean E[X*|η] and the 
conditional variance Var(X*|η) of X *. Given the relations in 
Equation 2, we can determine that
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Note that Var(X*|η) does not vary as a function of η 
because Var(η) at a specific value of η is zero, which fol-
lows from the assumption of homogeneity of the residual 

variance. Note that 
j

jΣτ  and 
j

jΣλ  are the intercept and 

slope of an unbounded line mapping η to X * , and at each 

value of η, the X * has a constant variance, 
j

jΣVar( )Σ . The 

η to X * mapping is similar to the test characteristic curve 
(TCC) estimated for item responses models, with three 
exceptions: the TCC is bounded by the minimum and maxi-
mum values of X *, can be S-shaped, and it does not have a 
constant variance at each level of the latent variable 
(Thissen, 2000). The right panel of Figure 1 shows exam-
ples of P(X*|η) from the linear factor model, which differs 
from the conditional summed score distributions obtained 
from an IRT model (Lee, 2010; left panel of Figure 1)—the 
former are continuous and normal at all levels of the latent 
variable while the latter are discrete and can take non-nor-
mal shapes. Thus, the performance of our procedure 
depends on how closely P(X*|η) adheres to a normal distri-
bution at each level of η.
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Notes

1. The procedure defines the model-implied reference class for 
CA estimation as being at or above the η value that yields 
the model-implied Xc

*. For the example presented in the 
illustration section, if researchers use a K6 cutpoint of 13, 
then the model-implied reference class used by the procedure 
is defined by η ≥ 1.06 because η = 1.06 yields a model-
implied K6 cutpoint of 13 using Equation 3 in the appendix 
for the conditional mean. The Xc

* is typically determined 
empirically or by subject-matter experts. If the cutpoint were 
given in the η metric (e.g., cutpoint at η = 1.5), it could be 
transformed to the model-implied X * using Equation 3.

2. We simulated θ to have a mean of 1 because some items had 
very extreme b-parameters (above 3). A consequence of this 
decision is that when we fit the factor model and constrain 

the θ distribution to have a mean of 0, the b-parameters are 
rescaled by subtracting 1 from their original values.
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