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Article

Screening measures are used to improve the efficiency of 
clinical assessment. The screening measure is typically 
briefer, cheaper, and less burdensome than the full assess-
ment. For example, suppose that a health care network is 
screening all adults in primary care for major depressive dis-
order (MDD). Only 6.6% of adults meet Diagnostic and 
Statistical Manual of Mental Disorders criteria for MDD 
(Kessler et al., 2003), so administering a full diagnostic 
interview to every patient in the network would expend a 
large amount of the time of both providers and patients. A 
more efficient approach is to first administer a low-burden 
screening measure, then complete a full diagnostic interview 
only with those individuals who are flagged by the screen-
ing. When screening for MDD, a common approach is to 
administer the Center for Epidemiologic Studies of 
Depression (CES-D) Scale and follow-up with respondents 
who obtain total scores greater than or equal to 16 (Vilagut 
et al., 2016). In almost all cases, the screening measure con-
sists of a series of binary items (i.e., a symptom is present or 
not) or polytomous items (i.e., Likert-type scale), and item 
responses are counted or totaled to estimate an observed 
score. The assessor then classifies the respondent by com-
paring the observed score with a predetermined cutscore 
(Youngstrom, 2013) or a percentile of risk (e.g., Lochman & 
The Conduct Problems Prevention Research Group, 1995).

When completing a screening measure, respondents 
from a target group may systematically rate themselves 

higher or lower on items than a different group. This is 
referred to as measurement bias or differential item func-
tioning (DIF). For example, previous research suggests that 
Latinos are more likely than non-Latinos to endorse items 
from the Beck Depression Inventory (Beck et al., 1961) 
related to crying even when they are equivalent in level of 
depression. Latinos may be more willing to endorse these 
items because crying is more socially acceptable in Latino 
cultures (Azocar et al., 2001). Score differences on these 
items therefore represent culture-based differences in the 
pattern of responding rather than true differences in the con-
struct of interest—depression. As a result of this overen-
dorsement, Latinos will have greater observed scores for 
depression than non-Latinos even when their true level of 
depression is identical. In this case, the crying items exhibit 
DIF across groups (Millsap, 2011).

In the context of a screening measure, the presence of 
measurement bias is troubling. The goal of screening is to 
identify those at the highest levels of the construct of interest 
(e.g., depression), not to identify those from groups for whom 
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there is positive bias on the screening measure. Ignoring 
measurement bias could lead respondents from a certain 
group to be more likely “caught” in the screening. Similarly, 
measurement bias could lead respondents from a different 
group to be less likely “caught” in the screening. Last, there 
could be situations in which measurement bias in the assess-
ment does not affect screening performance across groups. 
Returning to our earlier example, suppose that the CES-D is 
being used to screen adults in a primary care network for 
MDD and those with a CES-D total score greater than or 
equal to 16 are flagged for a complete diagnostic assessment. 
The systematic overendorsement of crying items may place a 
disproportionate number of Latino adults over the CES-D 
cutscore, even though their true level of depression is lower 
than non-Latinos who are not flagged for a diagnostic inter-
view. Screening based on the CES-D total score would pro-
duce more false positives among Latinos, yielding lower 
sensitivity. The same would be true if a percentile were used 
(e.g., top 10%) instead of a predetermined cutscore.

Standard approaches to testing for DIF focus on the sta-
tistical question of whether the relation of an item to the con-
struct of interest varies across groups (Millsap, 2011; Teresi 
et al., 2006). These methods typically do not provide guid-
ance on whether the bias materially affects the performance 
of the measure in a screening context, even though this is 
often of practical importance. In other words, DIF testing 
consists on testing for statistical significance in item bias, 
rather than assessing if the item bias is practically signifi-
cant (Lai et al., 2017; Lai et al., 2019). Recently, effect sizes 
to estimate the magnitude of DIF have been discussed 
(Kleinman & Teresi, 2016; Meade, 2010), but most are asso-
ciated with differences in expected scores or differences 
across parameters per group, not with screening (Lai et al., 
2019; Millsap & Kwok, 2004). In our running example, 
even though significance testing might flag several CES-D 
items as having DIF in Latinos versus non-Latinos, this does 
not necessarily imply that DIF will lead to worse sensitivity 
or specificity in the measure. If Latinos overendorse the cry-
ing items and also underendorse a different subset of items, 
this might not convey worse screening performance, so the 
assessor may safely continue to use that measure. This situ-
ation is referred to as DIF cancellation (Chalmers et al., 
2016). On the other hand, if the screener exhibits DIF that 
does convey worse screening performance, then the assessor 
may need to drop the items that exhibit DIF or stop using the 
screener. Thus, there is need for methods to empirically 
evaluate how the presence of DIF on a measure affects 
screening performance.

The purpose of this article is to extend earlier work eval-
uating the impact of measurement bias on screening (Lai  
et al., 2017; Lai et al., 2019; Millsap & Kwok, 2004) to a 
more general class of clinical assessment scenarios. We 
focus on extending the methodology developed by Millsap 
and Kwok (2004), one of the few approaches that describes 

the effect of DIF at the aggregate level of a measure whose 
end goal is selection—the screening process is inherently a 
selection problem. First, we review item response theory 
(IRT) models that analyze measures with discrete item 
responses and test for DIF. Second, we describe the 
approach by Millsap and Kwok (2004) to evaluate the 
impact of measurement bias and identify key limitations. 
Finally, we introduce extensions of their method that 
improve its utility in real-world screening scenarios and use 
simulations and illustrations to evaluate our proposed 
methodology.

Item Response Theory Models

The methods in this article are based on IRT, a family of 
latent variable models that allow for a detailed analysis of 
items with discrete responses (Edelen & Reeve, 2007; 
Thissen & Wainer, 2001; Thomas, 2011). A widely used 
item response model that describes the probability of 
endorsing Likert-type item responses is the graded response 
model (GRM; Samejima, 1969), expressed as follows:
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In this case, u refers to the observed value when the respon-
dent endorses category k on item i, the θ parameter refers to 
the respondent’s standing on the underlying construct that 
the items measure, the a-parameter refers to the relationship 
between item i and the construct (analogous to a factor 
loading in factor analysis), and the b-parameters indicate 
the location in the range of θ where respondents have a 50% 
probability of endorsing category k or a higher category. If 
the item is comprised of m categories, then there would be 
m − 1 b-parameters. The T k* ( )  represents the trace line 
that describes the probability of responding k to item i or 
higher. Also, by model definition, T * 0 1( ) =  and 
T km
* +( ) =1 0 , where km  is the highest category. If the 

item is only comprised of two categories, then the GRM 
reduces to the two-parameter logistic (2PL) model, which is 
a widely used item response model for binary items (with 
symbols defined above):
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The models in Equation 1 or Equation 2 can be used to pro-
duce trace lines (see Figure 1), which show the relation 
between a respondent’s standing on the latent variable and 
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his or her probability of endorsing a specific item category 
for a specific item. For a binary item (Figure 1A), the 2PL 
trace line shows that the predicted probability of endorsing 
the item increases as θ increases. For a polytomous item 
(Figure 1B), the GRM trace lines show that the probability 
of endorsing a higher item category increases as θ increases.

Certain assumptions must hold for item response models 
to give accurate results (Thissen & Wainer, 2001). First, we 
assume that the correct number of latent variables has been 
specified in the item response model. Second, we assume 
local independence, or that item responses are unrelated, con-
ditional on the latent variable(s). Third, we assume that the 
item parameters—and thus the trace lines—are the same 
across groups. Figure 1C and Figure 1D illustrate the case in 
which this assumption is violated: at the same value on the 
latent variable, Latino and non-Latino respondents have dif-
ferent predicted probabilities of endorsing an item response. 
The measurement is not invariant across the groups. Rather, 

these two items exhibit DIF and introduce measurement bias 
to the assessment (Edelen & Reeve, 2007). Our proposed 
procedure requires that researchers meet the first two assump-
tions (i.e., unidimensionality and local independence) and 
evaluates how screening decisions change when the third 
assumption (measurement invariance) is not met.

Measurement Invariance and Differential Item Function-
ing. The presence of DIF indicates a lack of measurement 
invariance. Measurement invariance is required to compare 
observed scores between two groups (Meredith, 1993). If 
measurement invariance is violated, then observed differ-
ences between two groups could be due to (a) true differ-
ences in the latent construct, (b) systematic bias in 
measurement, or (c) the combination of (a) and (b). Both (b) 
and (c) can lead to incorrect inferences about observed 
group differences, the construct, or its relation to other cri-
teria. Methodologists have developed many different 

Figure 1. Item response trace lines showing the relationship between the construct and the probability of endorsing a response 
option: (A) Trace line for a single item in the 2PL model; (B) Trace lines for a single item in the graded response model; (C) Trace 
lines for a single item in the 2PL model exhibiting DIF across Latinos (dashed line) and non-Latinos (solid line); (D) Trace lines for a 
single item in the graded response model exhibiting DIF across Latinos (dashed lines) and non-Latinos (solid lines).
Note. CES-D = Center for Epidemiologic Studies of Depression Scale; DIF = differential item functioning; 2PL = two-parameter logistic. Hypothetical 
example for C and D: Item 17 of the CES-D, I had crying spells (as either a binary item or four-category item). At the same level of the construct, 
Latinos (dashed line) had a different probability of endorsing that they had crying spells compared with non-Latinos (solid line).
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procedures to test if items exhibit DIF (Millsap, 2011; 
Teresi et al., 2006; Thissen et al., 1993). If some items have 
been flagged with DIF, it is important to evaluate the impact 
of DIF on the decisions based on the respondent’s score on 
the overall measure. As described earlier, DIF may posi-
tively or negatively bias overall observed scores from a spe-
cific group of respondents (e.g., Latinos), which may in turn 
affect the sensitivity or specificity of the screening proce-
dures based on the observed scores. However, DIF may be 
statistically detectable yet have no practical impact on 
screening performance. Below, we describe the Millsap and 
Kwok (2004) procedure to empirically evaluate the degree 
to which the presence of DIF on a screening measure affects 
the sensitivity and specificity of the screening procedure.

Evaluating the Impact of Differential Item 
Functioning on Screening Performance

Suppose that the assessor is interested in using a unidimen-
sional measure to screen for depression in order to identify 
participants high on the depression construct. In theory, if a 
model in which partial invariance (e.g., some but not all 
items exhibit DIF) is confirmed and latent variable scores 
for depression were known, these latent variable scores 
would be used for screening because they would not be 
influenced by measurement bias (Teresi et al., 2012). 
However, screening is usually based on the observed score 
(e.g., summed score on the CES-D), which is an imperfect 
estimate of the latent variable score that is prone to mea-
surement bias.

As shown in Equation 1 and Equation 2, item response 
models assume that there is a relation between the latent 
variable score and the probability of endorsing an item cat-
egory. Millsap and Kwok (2004) used this property to 
develop an analytical procedure to evaluate the impact of 
DIF on screening performance. Their procedure studies the 
agreement between classifying respondents using the latent 
variable and classifying respondents using observed scores 
across two conditions. Given a set of latent variable scores, 
one first derives the expected observed scores from an IRT 
model where DIF is present (Mdif ; items with DIF have 
group-specific item parameters). Then, given the same set 
of latent variable scores, one derives the expected observed 
scores from an IRT model where DIF is ignored (Minv ; 
items with DIF have the same item parameters across 
groups). For each group, we compare the classification 
agreement of the latent variable with (a) the classification of 
the expected observed scores under Minv  and with (b) the 
classification of the expected observe scores under Mdif . 
Two indices of agreement are sensitivity and specificity. 
Sensitivity would be the number of cases above the cutscore 
on the latent variable whose expected observed score under 
Mdif  is above the observed cutscore, and specificity would 

be the number of cases below the cutscore on the latent vari-
able whose expected observed score under Mdif  is below 
the observed cutscore (note that sensitivity and specificity 
could also be calculated relative to the expected observed 
scores under Minv ). The difference in classification agree-
ment under Minv  versus Mdif  is an index of the impact of 
measurement bias on screening performance. A major 
advantage of the Millsap and Kwok (2004) procedure over 
other DIF effect sizes is that it describes the impact of DIF 
in terms that are familiar to assessment specialists, such as 
differences in sensitivity and specificity. By considering 
differences on these practical metrics, assessment special-
ists can make more informed decisions about screener use 
in a specific substantive application.

However, the Millsap and Kwok (2004) procedure has 
a key limitation: it assumes that item responses are con-
tinuous and normally distributed. This restricts its use in 
realistic assessment scenarios because many question-
naire-based screening measures consist of items with just 
a few response options. This limitation has been partially 
addressed by Lai et al. (2019), who used an analytical 
approach to extend the Millsap and Kwok (2004) method 
to the case of scales with binary (i.e., yes/no) items. 
However, analytical methods for polytomous (Likert-
type) items (e.g., never/sometimes/always) have not been 
developed, perhaps because it is analytically difficult to 
derive the relation between the observed score and the 
latent variable in that scenario (Millsap, 2013).

Present Study

In this article, we propose a simulation-based method that 
allows the investigator to quantify the impact of DIF on 
screening performance with either binary or polytomous 
items, generalizing the Millsap and Kwok (2004) method to 
a broader class of potential applications. The proposed 
method describes the magnitude of DIF in a language famil-
iar to assessment specialists, empirically evaluates whether 
the presence of DIF on a screening measure affects screen-
ing performance, and handles binary and polytomous items 
that comprise most screeners. Our approach extends the 
Millsap and Kwok (2004) procedure by incorporating IRT 
models to acknowledge the discrete nature of items and by 
using Monte Carlo simulation methods to approximate the 
relation between observed scores and latent variable scores 
(as opposed to deriving the relation between observed 
scores and latent variable scores analytically; Lai et al., 
2019; Millsap, 2013; Millsap & Kwok, 2004). First, we 
describe the proposed procedure. Second, we illustrate our 
procedure using information from a published DIF study on 
CES-D scale across mode of assessment (Chan et al., 2004). 
Third, we report results from a simulation study that com-
pares the simulation-based methods to the existing analyti-
cal method by Lai et al. (2019) in the context in which they 
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both can be applied (i.e., binary items) and evaluate how 
many iterations of simulation are needed to provide stable 
estimates of screening performance. In the supplement 
(available online), we provide a suite of R functions for 
users to apply the simulation-based procedure method in 
their own data and a step-by-step tutorial on how to do so. 
For simplicity, our procedure assumes that the screening 
measures fit a unidimensional model and that a subset of the 
items has been accurately flagged with DIF.

Description of Proposed Method

General Procedure for the Proposed 
Methodology

The proposed procedure is simulation-based and takes a few 
seconds to complete on a MacBook Pro with 3.1 GHz and 16 
GB of RAM. Below, we outline the general procedure. The 
supplementary materials (available online) present R func-
tions to implement the procedure. To use the functions, the 
end user needs only to specify three pieces of information 
commonly found in any DIF study: (a) mean and variances of 
the latent variable per group, (b) item parameters per group, 
where the parameters of DIF-free items are constrained to 
equality across groups, and (c) the proportion of cases belong-
ing to each group. Raw data are not needed unless the DIF 
study is yet to be carried out.

Suppose that one suspects that there is DIF across gen-
der. Our R functions automate the following steps:

1. Simulate latent variable scores for large number of 
respondents (N = 25,000). Specifically, a latent vari-
able score for a male would be a draw from a normal 
distribution with mean µM and variance σM

2 . On the 
other hand, a latent variable score for a female would 
be a draw from a normal distribution with mean µF 
and variance σ F

2 . Match the proportion of cases of 
males versus females to population proportions (i.e., 
50% to 50%). In applications where the population 
proportions are not known, match the number of 
cases to the sample proportions in the study (e.g., if 
the sample was 75% female, then 75% of the simu-
lated respondents should be female).

2. For each case, simulate an item response pattern by 
inputting the respondent’s latent variable score to an 
item response model that accounts for DIF (Mdif ; 
males and females have some item parameters that 
are the same and some that are allowed to differ). 
For each case, sum the item responses to calculate 
the observed score under Mdif .

3. Choose a pair of cutscores in (a) the latent variable 
score and the (b) observed score under Mdif  that 
each separate the same proportion of the distribu-
tion. For example, suppose the screening procedure 

typically flags those with observed scores greater 
than 10. Fix the cutscore in the distribution of 
observed scores at 10. Calculate the proportion of 
cases at or above this cutscore. Then, find the latent 
variable score above which there is the same pro-
portion of cases. Fix the cutscore in the distribution 
of the simulated latent variable scores to be this cal-
culated value.

4. Calculate classification accuracy for the 2 × 2 table 
defined by being above/below the cutscores in the 
latent variable and observed score under Mdif . 
These statistics indicate screening performance 
under a model that accounts for DIF.

5. Repeat Step 2, but now for each case, simulate an 
item response pattern by inputting the respondent’s 
latent variable score to an item response model that 
ignores DIF (Minv ; all item parameters are the same 
across males and females). For each case, sum the 
item responses to calculate the observed score under 
Minv .

6. Calculate classification accuracy for the 2 × 2 table 
defined by being above/below the cutscores (same 
values from Step 3) in the latent variable and 
observed score under Minv . These statistics indicate 
screening performance under a model that ignores 
DIF.

7. Compare the estimates of screening performance 
obtained in Step 4 and Step 6 per group. Evaluate 
the magnitude of any differences in light of the spe-
cific assessment application.

Screening Performance

Performance Metrics. Steps 4 and 6 above referred to clas-
sification accuracy as the measure of screening perfor-
mance. However, many statistics can be calculated from a  
2 × 2 table, including sensitivity, specificity, positive pre-
dictive value, or negative predictive value (Youngstrom, 
2013). Table 1 illustrates calculations for several statistics 
that can be used to characterize screening performance 
under models that ignore versus account for DIF.

Multiple-Cutscore Scenario. Step 3 above referred to choosing a 
single cutscore in the latent variable score and a single cutscore 
in the expected observed score. However, the choice of 
cutscore might vary as a function of the resources available or 
assessment goals. For example, if an intervention is cheap, a 
low cutscore would prevent researchers from missing respon-
dents with the condition, and if an intervention is expensive 
and invasive, a high cutscore would guarantee that respondents 
who receive the intervention actually needed it. For example, 
although an observed score ≥16 is a common cutscore used 
when screening with the CES-D, a cutscore of >20 is also 
often used (Vilagut et al., 2016). Thus, it would be important to 
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evaluate the impact of DIF when screening at multiple cutoffs. 
To do so, Steps 4 and 6 can be repeated using different 
cutscores, or even across the range of cutscores. Considering a 
range of all possible cutscores might be especially important 
when a measure does not have a recommended cutscore, but 
rather is used to identify a fixed proportion of those most at risk 
(e.g., the upper 30%, 20%, or 10%).

Application of Proposed Method

This section illustrates the proposed methodology in a spe-
cific application. An additional fully worked example using 
the R functions we have written is included in the supple-
ment (available online).

CES-D and DIF by Mode of Assessment

The CES-D, originally developed to be administered in a 
face-to-face interview, is composed of 20 four-category 
items that assess different aspects of depression, such as 
depressed and positive affect, somatic and retarded activ-
ity, and interpersonal aspects of depression (Radloff, 
1977). Item parameters were obtained from the DIF 
study by Chan et al. (2004; see Table 3 of original article) 
on the CES-D across mode of assessment. The authors 
suggest that there might be measurement bias when the 
CES-D is administered through the phone (n= 139) or 
through mail (n = 139) in a primary care population. To 
identify the model, Chan et al. (2004) specified that the 
mean and variance of the latent variable equaled 0 and 1, 
respectively, for both groups. Also, the authors indicated 
which items were flagged with DIF, but they did not con-
strain DIF-free item parameters to be the same across 
groups. For an item parameter that was not flagged with 
DIF, we estimated a hypothetical invariant parameter by 
taking a weighted average of the item parameter across 
both groups. The authors determined that the CES-D 
items were unidimensional, and that 12 out of the 20 
CES-D items exhibited measurement bias across mail 
and phone respondents. Item parameters suggest that 
mail respondents were more likely to endorse depression 

items than phone respondents, with up to a 13% increase 
in probable depression in the mail respondents, indepen-
dent of the items’ stigma as rated by content experts 
(Chan et al., 2004). We now use the proposed simulation 
approach (with steps outlined above) to study how mea-
surement bias across mode of assessment affects the sen-
sitivity and specificity of the CES-D in screening for 
depression.

Using 25,000 simulated cases per group, the relation-
ship between the simulated CES-D theta score and the esti-
mated CES-D observed score under the model that allows 
for DIF is presented in Figure 2. We evaluated screening 
performance of the recommended CES-D cutscore of 
greater than or equal to 16, which indicates possible MDD. 
In the mixed distribution of phone and mail respondent 
summed scores, the recommended CES-D cutscore identi-
fied the top 50.6% of respondents. In the mixed distribu-
tion of phone and mail respondents’ theta scores, a cutscore 
greater than or equal to 0.022 identified the same propor-
tion (50.6%) of respondents.

Table 1. 2 × 2 Contingency Table to Estimate Classification Performance.

Observed score

 Latent variable score Below cutscore Above cutscore

Below cutscore TN FP
 Above cutscore FN TP
Sensitivity = TP / (TP + FN)
Specificity = TN / (TN + FP)
Classification rate = (TP + TN) / (TP + TN + FP + FN)
Proportion identified = TP + FP

Note. TP = True Positive; FP = False Positive; FN = False Negative; TN = True Negative.

Figure 2. Relationship between the CES-D theta score and 
the CES-D summed score (black: phone respondents, gray: mail 
respondents).
Note. CES-D = Center for Epidemiologic Studies of Depression Scale. 
Summed score estimates for reference (ref) and focal (foc) groups 
should be overlapping, but there were offset for presentation purposes.
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Based on these cutscores, we calculated assessment sen-
sitivity, specificity, and other classification statistics (see 
Table 2). If measurement invariance were to hold, the sensi-
tivity of the measure for mail and phone respondents would 
be 0.94. However, given that measurement invariance did 
not hold (i.e., some items exhibit DIF), the sensitivity of the 
measure was 0.98 for mail respondents and 0.88 for phone 
respondents. Therefore, DIF in the measure led to a lower 
likelihood of identifying depressed respondents by phone 
than over the mail. If measurement invariance were to hold, 
the specificity of the measure for mail and phone respon-
dents would be 0.93. Given that measurement invariance 
did not hold, the specificity of the measure was 0.87 for 
mail respondents and 0.97 for phone respondents. Therefore, 
DIF in the measure led to a lower likelihood of identifying 
nondepressed respondents over the mail than by phone. 
Overall, the results suggest that ignoring DIF had an impact 
on the screening performance of the measure. Assessment 
specialists would have to decide if a difference of 0.10 in 
sensitivity and 0.10 in specificity across groups at the rec-
ommended CES-D cutscore is practically important.

Figure 3 shows how DIF on the CES-D affects sensitivity 
and specificity across a range of cutscores or quantiles in the 
latent variable score distribution. Although DIF seems to 
have a similar impact on sensitivity across cutscores, DIF 
appears to have a greater impact on specificity when the 
cutscore is at low levels of the construct, and appears to have 
little impact when the cutscore is high. As noted above, 
specificity is the proportion of respondents below the latent 
variable cutscore that are also below the cutscore on the 
CES-D summed score. For example, suppose that a 
researcher wishes to identify respondents above the 10th 

percentile, defined by a summed cutscore greater than or 
equal to 2 and a theta cutscore greater than or equal to −1.28. 
Chan et al. (2004) suggest that for items with DIF, thresholds 
in the low end of the latent variable were smaller for mail 
respondents than for phone respondents. As a result, when a 
mail and a phone respondent have the same score at the low 
end of the latent variable (i.e., a latent score around −1.28), 
the mail respondent is more likely to have a summed score 
higher than 2 than the phone respondent. Thus, the mail 
respondent might be more likely to be caught by the screener 
using a cutscore of 2, yielding a high false positive rate and 
low specificity. Similarly, higher thresholds for phone 
respondents (relative to the mail respondents) at the low 
level of the latent variable are associated with lower summed 
scores, a lower likelihood to be caught by the screener using 
the cutscore of 2, high false negatives rates and specificity, 
and low sensitivity.

Simulation Study

The previous section illustrated the proposed method via 
application. This section describes a simulation study that 
sought to answer two questions about the proposed method. 
First, how well does the simulation-based method recover 
the estimates provided by Lai et al.’s (2019) analytical 
method in the case of binary items (for which both methods 
can be used)? Second, how many iterations of the simula-
tion are needed to obtain stable estimates of screening 
performance?

Simulation Specification

The population model was a standardized categorical factor 
model with binary items specified using the delta parame-
terization. Data were generated under three settings: (a) a 
fully invariant condition, (b) a condition in which the focal 
group had a higher mean (.50) and variance (1.5) than the 
reference group (mean of 0 and variance of 1), and (c) a 
condition in which there were violations of invariance in the 
factor loadings (e.g., the last two items for the focal group 
had factor loadings half of the size of the reference group) 
and thresholds (e.g., first two thresholds for the focal group 
had thresholds 0.50 higher than the reference group). There 
were the same number of cases in the reference and focal 
groups.

We varied the number of items (5 to 15) and the number 
of cases sampled (1,000, 5,000, 10,000, 25,000; as in Step 1 
of the general procedure described above) to estimate vari-
ability of the sensitivity and specificity estimate. The scale 
of the items was set to unity. Factor loadings per condition 
were equally spaced between 0.3 and 0.7 (i.e., for a condi-
tion with seven items, factor loadings were 0.300, 0.367, 
0.433, 0.500, 0.567, 0.633, and 0.700). The residual variance 
was 1 minus the factor loading squared for each respective 

Table 2. Diagnostic Classification Statistics for the Two 
Illustrative Examples.

CES-D example

 Ignoring DIF Accounting for DIF

 Phone + mail Phone Mail

Sensitivity .937 .878 .969
Specificity .938 .974 .876
Classification rate .937 .927 .923
True Positive % .462 .426 .486
True Negative % .474 .501 .436
False Positive % .032 .013 .062
False Negative % .031 .059 .016
Proportion identified .493 .439 .548

Note. CES-D = Center for Epidemiologic Studies of Depression Scale; 
DIF = differential item functioning. For the CES-D, phone and mail 
respondents have the same classification accuracy statistics for the 
model ignoring DIF because they were not expected to differ in the 
mean and variance of the latent variable—they were randomized to 
assessment administration condition.



Gonzalez and Pelham 453

item. The thresholds for all items were simulated to be zero, 
so each response had a 50% chance of being endorsed. In 
this fully crossed simulation, there were 132 conditions 
examined (11 number of items x 3 invariance settings x 4 
numbers of cases sample), with 1,000 replications per 
condition.

Procedure for Simulation Study

First, the analytical approach (from the R code in Lai et al., 
2019) was used to estimate sensitivity and specificity per 
group using the factor loadings, thresholds, and residual 
variances. Then, the loadings and thresholds were trans-
formed to a and b parameters in the IRT metric using the 
following relations (Wirth & Edwards, 2007):

a
D

bj
j

j

j
j

j

=
−

=
λ

λ

τ

λ1 2
;  (3)

In this case, D is a scaling constant of 1.7 used to convert IRT 
logistic estimates to normal-ogive estimates, λ is the factor 
loading in the factor analysis metric, and τ is the threshold in 
the factor analysis metric. The a- and b-parameters (in the 
IRT metric) were then used to estimate sensitivity and speci-
ficity using our proposed simulation approach (with R func-
tions presented in the supplementary materials, available 
online). Our proposed procedure would be deemed compa-
rable to the analytical approach from Lai et al. (2019) if it is 
able to recover the same estimates of sensitivity and 

specificity. Recovery was assessed by estimating relative 
bias (i.e., difference between sensitivity across the two 
approaches, divided by the estimate of sensitivity by the ana-
lytical approach in Lai et al., 2019; same formula for speci-
ficity), and the magnitude of the estimated standard deviation 
of the sensitivity and specificity estimates by the simulation 
approach across replications. A relative bias estimate of less 
than 0.05 and a standard deviation around 0.01 would sug-
gest that the simulation approach provides unbiased and sta-
ble estimates of the impact of DIF on sensitivity and 
specificity of a measure with binary items.

Results

Simulation results are presented in Table 3 and Tables S1 to 
S4 in the supplementary materials (available online). Across 
conditions, relative bias for sensitivity and specificity was 
low. Relative bias was below 0.05 for conditions in which 
item parameters were invariant (Table 3) and in conditions 
in which the item parameters were invariant, but reference 
and focal groups have different means and variances (see 
Tables S1 and S2 in the supplementary materials, available 
online). Finally, relative bias was below 0.05 in conditions 
with at least seven items for the condition where some items 
have DIF, and relative bias never exceeds 0.07 in conditions 
with fewer than seven items (see Tables S3 and S4 in the 
supplementary materials, available online). As expected, 
the standard deviation of the sensitivity and specificity esti-
mate decreased as more cases were sampled. Across 

Figure 3. Sensitivity and specificity at different screening cutscores in the CES-D example.
Note. CES-D = Center for Epidemiologic Studies of Depression Scale. “ref” is for reference group (phone respondents), “foc” is for focal group (mail 
respondents), T.cutscore refers to the cutscore at or above the specific value on the latent variable (θ) score, and S.cutscore refers to the cutscore at 
or above the specific value on the observed summed score.
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conditions, when 1,000 cases were simulated, the standard 
deviation of the sensitivity and specificity estimates was as 
high as 0.06, but the standard deviation of the estimates was 
consistently around 0.01 when there were 25,000 cases sim-
ulated for the simulation-based approach.

Broadly, our results suggest that the simulation-based 
approach recovers the estimates of sensitivity and specificity 
from analytical procedure by Lai et al. (2019). When the 
screener consists of fewer than seven items, the analytical 
approach is recommended because the simulation-based 
approach led to relative bias between 3% and 6%. When the 
screener has more than seven items, the analytical approach 
and the simulation-based approach with 25,000 iterations pro-
vide similar and stable estimates. Finally, when the screener 
consists of polytomous items, the simulation approach may be 
used because an analytical method is not yet available.

General Discussion

When researchers use screening measures in heterogeneous 
samples, it is important to determine if the construct is 
being measured in the same way across groups (e.g., males 
vs. females). If there are systematic differences in measure-
ment across groups (i.e., DIF), then respondents from cer-
tain groups might be overidentified or underidentified by 
the screening procedure. An empirical evaluation of how 
the presence of DIF affects screening performance can help 
assessment specialists understand whether a measure with 
DIF is still suitable for use. This article (a) proposed a sim-
ulation-based procedure for evaluating how DIF affects 

screening performance, (b) illustrated the procedure using a 
published example, (c) conducted a simulation study to 
evaluate the stability of the procedure and the recovery of 
analytical estimates of sensitivity and specificity when DIF 
is found in assessments with binary items, and (d) provided 
R functions to implement the procedure in future applica-
tions. The article makes a novel methodological contribu-
tion by extending the Millsap and Kwok (2004) procedure 
to match general assessment scenarios, wherein items are 
binary or polytomous rather than continuous.

Standard procedures for identifying whether DIF is pres-
ent typically do not provide guidance on whether DIF ren-
ders the measure too biased to use for screening. Our goal 
was to present assessment specialists with a tool that can be 
used in conjunction with standard procedures to provide an 
understanding of how violations of measurement invariance 
affect decisions based on the assessment in metrics that were 
intuitive to understand (e.g., changes in classification accu-
racy, sensitivity, and specificity). Changes in screening per-
formance (e.g., accuracy) as a result of DIF can be thought 
of as effect sizes that might accompany the statistical proce-
dures that test for DIF. Also, we illustrated how this proce-
dure might be conducted with information found in published 
studies, should investigators want to address this question 
using information in a previous report that did not examine 
the impact of DIF on screening performance (such as the 
CES-D example in text and step-by-step example in the sup-
plementary materials, available online). If some pieces of 
information are not reported (e.g., mean or variance of the 
latent variable), we  recommend contacting the original 

Table 3. Relative Bias for the Sensitivity and Specificity Estimates from the Proposed Simulation Approach compared with the 
Analytical Approach, and Empirical Standard Deviation of the Sensitivity and Specificity Estimates per Condition.

i

Case 1: Full Invariance

Number of cases simulated

Relative bias: sensitivity [specificity] Standard deviation: sensitivity [specificity] estimate

1,000 5,000 10,000 25,000 1,000 5,000 10,000 25,000

5 .009 [.008] .009 [.009] .009 [.009] .009 [.009] .014 [.014] .007 [.007] .004 [.005] .003 [.003]
6 .006 [.012] .005 [.011] .006 [.013] .005 [.012] .012 [.018] .005 [.008] .003 [.006] .002 [.004]
7 .002 [.014] .003 [.014] .003 [.013] .003 [.014] .010 [.020] .005 [.009] .003 [.006] .002 [.004]
8 .003 [.011] .001 [.014] .001 [.013] .001 [.014] .009 [.023] .004 [.010] .003 [.007] .002 [.005]
9 .000 [.014] −.001 [.013] −.001 [.013] −.001 [.013] .008 [.025] .004 [.012] .002 [.008] .002 [.005]
10 −.001 [.013] −.001 [.011] −.002 [.012] −.002 [.011] .007 [.029] .003 [.013] .002 [.009] .001 [.006]
11 −.002 [.008] −.002 [.008] −.002 [.008] −.002 [.009] .007 [.032] .003 [.014] .002 [.010] .001 [.006]
12 −.002 [.008] −.002 [.005] −.002 [.007] −.002 [.006] .006 [.035] .003 [.016] .002 [.011] .001 [.007]
13 −.002 [.002] −.002 [.004] −.002 [.003] −.002 [.003] .006 [.039] .002 [.017] .002 [.012] .001 [.008]
14 −.002 [.000] −.002 [.000] −.002 [.000] −.002 [.000] .005 [.042] .002 [.018] .002 [.013] .001 [.008]
15 −.002 [−.003] −.002 [−.034] −.002 [−.001] −.002 [−.003] .005 [.046] .002 [.020] .003 [.014] .001 [.009]

Note. i = number of items. Reference and focal groups would have the same estimate of sensitivity and specificity. All items are binary and the cutscore 
was an observed score of 3. Relative bias is the estimate of the simulation-based procedure minus the estimate of the procedure by Lai et al. (2019), 
divided by the estimate by the procedure of Lai et al. (2019).
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authors to obtain the information and prevent inaccurate 
analyses. In our case, for illustration purposes, we made 
some assumptions about the pieces of information that were 
missing.

Limitations and Future Directions

A limitation of our procedure is that it assumes that the item 
response model fits the data well and that item parameters 
and latent variable distribution per group have been esti-
mated precisely. Therefore, we emphasize that we made 
those assumptions to illustrate the proposed procedure and 
not to guide the appropriate use of the CES-D. As such, we 
encourage researchers to provide as much descriptive infor-
mation as possible in their DIF studies. Second, it is impor-
tant to note that this procedure will be useful when the 
assessor is making decisions based on the observed assess-
ment score. Measurement bias might be less of an issue 
when the assessor is classifying respondents based on their 
latent variable scores. If partial invariance is found, item 
response models could accommodate DIF by linking latent 
variable scores from respondents across groups (Edelen & 
Reeve, 2007). A goal of IRT is to locate respondents along 
the scale of the latent variable. The location in the scale of 
the latent variable is the score of the respondent. As long as 
there are some DIF-free items across groups, the scale of 
the latent variable per group would be the same, which 
makes the latent variable scores comparable. Then, the rest 
of the items with group-specific parameters (e.g., items 
with DIF) can be used to improve the precision of the score 
within group. A benefit of linking is that researchers could 
compare latent variable scores while accommodating items 
with DIF. Finally, a perceived limitation of our procedure 
may be that we cannot provide guidelines regarding how 
large a difference in sensitivity or specificity should be 
before researchers consider dropping items or stop using 
the assessment. However, such guidelines depend on the 
specific nature of the application and it is not possible to 
recommend specific cutoffs (Einhorn & Hogarth, 1981).

Future directions of this research include a full evalua-
tion of the proposed procedure using Monte Carlo simula-
tions. As the number of items and item response options 
increases, it is expected that item responses might behave as 
if they were continuous (Rhemtulla et al., 2012). Therefore, 
it is expected that the simulation-based procedure proposed 
in this study would approximate the performance of the 
original procedure presented by Millsap and Kwok (2004). 
It would be of interest to determine the conditions under 
which the approximation would occur. Furthermore, the 
proposed procedure could also be extended to examine how 
dropping a biased set of items changes screening perfor-
mance across groups. However, at this point the procedure 
becomes more complicated because dropping items would 
limit the range of the observed score, so other adjustments 
of the procedure might be needed. Also, it would be 

interesting to extend the proposed approach to examine the 
effect of DIF in assessments with mixed item-types and to 
situations in which screening depends on multiple scores, 
such as when the screener is not unidimensional. Finally, it 
would be interesting to continue to develop effect sizes for 
DIF and encourage researchers to use effect sizes to describe 
the impact of DIF on their assessments, as opposed to assess 
DIF by significance testing, which is sensitive to sample 
size (Kleinman & Teresi, 2016; Meade, 2010).

Conclusions

Assessment specialists desire that the individuals “caught” 
in a screening procedure were caught because they were 
high (or low) on the construct being screened for, not 
because of their sex, ethnicity, or other group membership. 
Studying DIF could be helpful to understand the magnitude 
of health disparities across populations of interest and guide 
public policy. To study disparities, it is important to have 
assessments that allow for valid comparisons across groups, 
and measurement invariance is a prerequisite to make valid 
comparisons (Teresi et al., 2006). With this article, we 
encourage researchers to incorporate this procedure into 
their toolbox to examine how DIF affects screening perfor-
mance across priority groups and prevent the use of mea-
sures that introduce meaningful bias.

Author’s Note
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