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Abstract

The cost-effectiveness of targeted delinquency prevention programs for children depends on the accuracy of the screening
process. Screening accuracy is often poor, resulting in wasted resources and missed opportunities to avert negative outcomes.
This study examined whether screening approaches based on logistic regression or machine learning algorithms could improve
accuracy relative to traditional sum-score approaches when identifying boys in the 5th grade (N = 1012) who would be repeatedly
arrested for violent and serious crimes from ages 13 to 30. Screening algorithms were developed that incorporated facets of
teacher-reported externalizing problems and other known risk factors (e.g., peer rejection). The predictive performance of these
algorithms was evaluated and compared in holdout (i.e., test) data using the area under the receiver operating curve (AUROC)
and Brier score. Both the logistic and machine learning methods yielded AUROC superior to traditional sum-score screening
approaches when a broad set of risk factors for future delinquency was considered. However, this improvement was modest and
was not present when using item-level information from a composite scale assessing externalizing problems. Contrary to
expectations, machine learning algorithms performed no better than simple logistic models. There was a large apparent advantage
of machine learning that disappeared after appropriate cross-validation, underscoring the importance of careful evaluation of
these methods. Results suggest that screening using logistic regression could improve the cost-effectiveness of targeted delin-
quency prevention programs in some cases, but screening using machine learning would confer no marginal benefit under
currently realistic conditions.
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Introduction

Violence and other forms of serious criminal behavior are
major public health problems that convey substantial econom-
ic and emotional costs to society (Bureau of Justice Statistics
2015; Federal Bureau of Investigation 2017). To address this
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situation, there has been a proliferation of interventions for
elementary-age children designed to prevent the emergence
of severe and chronic delinquency during adolescence and
young adulthood (O’Connell et al. 2009; Wilson and Lipsey
2007). These interventions are typically implemented in the
school setting using an indicated or selective approach in
which a subsample of children with known early risk factors
for later delinquency receives the intervention. Ideally, scarce
intervention resources are allocated to those children at
highest risk for the chronic and severe pattern of criminal
offending that conveys substantial emotional and financial
burden (Foster and Jones 2006), but this requires accurately
identifying the target children. The goal of this report is to
evaluate whether novel screening methods using (a) logistic
regression or (b) machine learning can improve accuracy in
identifying children at risk for chronic or severe criminal
offending.

The ultimate success of targeted delinquency prevention
programs is contingent upon the use of accurate screening
procedures. In the case of delinquency prevention, the
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traditional screening approach is to compute a risk index (i.e.,
a single variable measuring risk for later delinquency) and
then use one of two methods to choose which children should
receive the intervention. The first method is to enroll only
those children that exceed some threshold on a nationally
normed scale assessing early behavior problems, such as those
with a teacher-report z-score at or above the 85th percentile
(e.g., Lochman and Wells 2004). The second method is to
enroll children that exceed a sample-specific cut-score on a
summative risk index, such as children whose teacher-
reported behavior problem score exceeds the 80th percentile
among youth within the particular school district (e.g.,
Lochman et al. 2015). This method can be implemented using
a scale assessing behavior problems or a screen score
representing the cumulative number of risk factors present in
a child’s life (e.g., living in a single-parent household, attend-
ing an underfunded school). These traditional screening ap-
proaches can be conceptualized as “sum-score” methods be-
cause the risk score used for selecting children is calculated by
adding up equally weighted items on a behavior problem scale
or counting the number of risk factors present.

Unfortunately, sum-score screening methods have
been shown to have relatively poor accuracy in identi-
fying those children that will go on to exhibit serious
and persistent delinquency (Hill et al. 2004; Loeber
et al. 2005; Petras et al. 2013). For example, one lon-
gitudinal study found that a summative risk score based
on teacher-rated conduct problems accurately identified
about half of all boys in grades 1 to 5 (44—67% across
grades) who would be arrested for violence during ad-
olescence when equally weighting false positives and
false negatives (Petras et al. 2004). This screening
method also produced a large number of false positives
across grades (48—71%). False positive predictions result
in finite resources being wasted on children who would
not have gone on to exhibit delinquency, and false neg-
ative predictions result in the missed opportunity to
avert costly delinquency acts from occurring during ad-
olescence and adulthood. Both types of errors under-
mine the utility of targeted interventions, limiting return
on investment.

Moreover, the performance of these screening proce-
dures is likely worse than published literature suggests.
Most prior work has developed the sum-score approach
(e.g., selected the risk factors to count and the screening
cutpoint) in the same data that was used to evaluate the
approach (e.g., to calculate screening accuracy). This
procedure yields positively biased estimates of perfor-
mance and a screening method that is “overfit” to the
data and unlikely to perform well on new cases to be
screened (Babyak 2004). Thus, it is important to find
screening approaches that perform well in data not used
to develop the method.

Closer consideration of the traditional sum-score ap-
proach to screening reveals two key limitations that may
contribute to poor accuracy. First, sum-score approaches
assume that each risk factor should be given equal weight
when generating an overall risk score. For example,
targeted delinquency prevention programs for children
have used summative risk scores that equally weight minor
covert (e.g., lying) and more serious overt (e.g., physical
fighting) behavior problems, even though the latter are
more strongly associated with future criminal offending
(Loeber et al. 2005). Others have used multi-domain risk
scores that equally weight ancillary (e.g., low family in-
come) and primary (e.g., childhood conduct problems) risk
factors when identifying children for enrollment in delin-
quency prevention programs (e.g., Dishion et al. 2008).

A second limitation of sum-score approaches is that
they treat risk factors as having linear associations with
future delinquency and do not account for potential inter-
active effects between different risk factors. A failure to
account for these more complex associations may limit
classification accuracy. For example, deviant peer group
affiliation in childhood may only confer risk for future
criminal offending when present at high, but not moderate,
levels (Loeber et al. 2008). Similarly, higher cognitive con-
trol abilities may protect youth with persistent anger prob-
lems from engaging in criminal offending (Hawes et al.
2016). Risk factors may also exhibit a combination of
non-linear and interactive associations, although these
types of complex relations are rarely tested.

There are two clear strategies for overcoming these fun-
damental limitations of sum-score screening methods. The
first is to differentially weight risk factors using weights
determined via regression. In the case of a binary outcome
(e.g., delinquent vs. non-delinquent), this can be accom-
plished by fitting a logistic regression and weighting each
risk factor by the regression coefficient indicating its rela-
tion to the outcome to be predicted. Thus, primary risk
factors for delinquency (e.g., aggression) can contribute
more to the overall screening score than more ancillary risk
factors (e.g., academic achievement). However, logistic re-
gression methods are limited in their ability to comprehen-
sively account for non-linear and interactive effects of mul-
tiple risk factors. Although it is possible to add non-linear
and interactive predictors into logistic models, one often
encounters estimation and separation issues when the num-
ber of predictors becomes large (Peduzzi et al. 1996). In
addition, it is difficult to satisfy the standard recommenda-
tion that logistic regressions be fit to datasets with a min-
imum of 10 events per predictor variable when evaluating
potential interactive and non-linear effects (Peduzzi et al.
1996). For example, considering only 10 risk factors for
delinquency, there are 45 potential two-way interactions
and 120 potential three-way interactions, which would
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necessitate a sample that contains 1750 youth who exhib-
ited the targeted delinquency outcome.

Machine Learning as an Untapped Approach

A more flexible and effective strategy that can be used to
account for non-linear and interactive associations is machine
learning. This class of techniques is used in statistics, comput-
er science, and engineering to build data-driven predictive
algorithms (Hastie et al. 2009). Although these methods have
improved prediction in diverse contexts, they have not yet
been applied to screening for delinquency prevention.
Relative to both sum-score approaches and to logistic regres-
sion, machine learning techniques are better able to reproduce
complicated causal structures including higher-order interac-
tions, are more accommodating of non-linear relationships
between predictors and outcome, and are capable of using a
much greater number of predictor variables (Hastie et al.
2009). For example, the popular random forest algorithm ag-
gregates the results of hundreds of classification “trees,” each
of which recursively partitions the sample into subgroups that
are maximally different in the outcome. This modeling strate-
gy allows for highly discontinuous effects (i.e., thresholds can
occur anywhere within the range of a risk factor), permits
many-way interactions (i.e., five recursive partitions would
indicate a five-way interaction), and enforces no restriction
on the number of predictors. Machine learning algorithms like
random forest may be able to address both the key limitations
of existing screening methods identified above and thereby
improve screening accuracy (Yarkoni and Westfall 2017).

We are aware of only two published applications in which
machine learning was compared to a simpler method in the
prospective prediction of delinquency outcomes. Neuilly et al.
(2011) found that a classification tree algorithm was more
accurate than logistic regression (88% vs. 82%) when
predicting recidivism among 320 convicted adult homicide
offenders. Kleinberg et al. (2018) compared a gradient
boosted trees algorithm with logistic regression when
predicting re-offense among more than 20k adult defendants
awaiting trial, finding that gradient boosted trees better iden-
tified offenders in the highest range of the risk continuum
(e.g., positive predictive value of 56% vs. 46% in the upper-
most 1% of risk). However, both studies focused on adults
who had already offended. It is unknown whether machine
learning can similarly improve the prospective prediction of
which children will go on to display serious and persistent
delinquency.

Present Study
The current study used longitudinal data collected on a school-

based sample of 1012 boys to investigate whether logistic
regression and/or machine learning algorithms can improve
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screening for targeted delinquency prevention programs, rel-
ative to traditional sum-score methods. Risk factors for delin-
quency were measured via teacher-report in the 5Sth grade
using a well-validated and nationally normed rating scale,
similar to those used to screen children for targeted delinquen-
cy prevention programs (e.g., Coping Power; Lochman et al.
2010). Serious and persistent delinquency outcomes from ad-
olescence through early adulthood were derived from official
criminal records. Models predicting delinquency outcomes
were developed using logistic regression and machine learn-
ing algorithms with a portion of the study sample. The perfor-
mance of these models was then evaluated on an independent
holdout sample and compared to traditional sum-score screen-
ing methods.

Methods
Sample

This study used longitudinal data collected on boys in
the youngest and middle cohorts of the Pittsburgh Youth
Study (PYS). Boys were selected for the study follow-
ing a screening assessment conducted with a random
sample of Ist grade (youngest cohort) and 4th grade
(middle cohort) students enrolled in the Pittsburgh pub-
lic schools (youngest N=849; middle N=868). At the
screening, the boys’ conduct problems were assessed via
measures given to parents, teachers, and the boys them-
selves. Boys who scored in the upper 30% of risk on
the screener and a roughly equal number of boys ran-
domly selected from the remainder participated in the
follow-up (youngest total N=1503; middle total N=
508). Across both cohorts, boys were predominately
black (54%) or white (42%). At the screening, most
boys were living with their biological mothers (93%),
and just under half had a father figure in the home
(42%). Boys in the follow-up sample did not differ
from those screened in terms of race, family configura-
tion, or level of parental education (for details see
Loeber et al. 1998).

The current study focused on evaluating the accuracy
of methods designed to identify youth for targeted de-
linquency prevention programs during late elementary
school, so all predictors were drawn from teacher-
report data collected on both cohorts during the spring
of the 5th grade (90% retention). This was the first
assessment after screening at which teacher-report data
was collected on both cohorts at the same grade level.
This grade-equivalent assessment enabled us to combine
data from both cohorts to achieve a sample large
enough for cross-validation.
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Measures
Teacher-Report Form

Predictors of delinquency outcomes were drawn from an ex-
panded version of the Teacher Report Form (TRF)
(Achenbach 1991) that included supplemental items added
by the PYS investigators. The TRF has well-established reli-
ability and validity in predicting later criminal offending (e.g.,
Pardini et al. 2018; Verhulst et al. 1994). The TRF instructed
teachers to rate how true a series of statements were about the
participant using a three-point scale: not true (0), somewhat or
sometimes true (1), very true or often true (2). Items measured
adaptive functioning in multiple domains: internalizing and
externalizing problems, hyperactivity/impulsivity, inattention,
social difficulties, and academic motivation. In addition,
teachers provided information about the child's academic per-
formance in the subjects of reading and math on a 5-option
scale (1 =far below grade to 5 = far above grade).

Analyses were repeated using two different sets of predic-
tors derived from the TRF. Each set had different advantages.
In addition, since our primary research question was the rela-
tive performance of sum-score, logistic regression, and ma-
chine learning methods, we wished to probe whether relative
performance depended on the nature of the predictors used.

Predictor Set #1: Externalizing Problem Items

The first predictor set comprised all 34 items from the
TRF externalizing composite scale subscale, plus the
age of the child in years. The items indicate a broad
array of childhood conduct problems, including aggres-
sion, oppositional, defiant behaviors, rule breaking, an-
ger outbursts, destruction of property, and truancy. This
predictor set had the advantage of being easy to repli-
cate or use in future studies that have collected the
TRF. In addition, by including more variables than
would typically be used in a sum-score or logistic re-
gression (i.e., 34 predictors), it probed the possibility
that machine learning would outperform the other
methods when the number of predictors was larger.

Predictor Set #2: Risk Factor Subscales

The second predictor set consisted of subscales measur-
ing nine different risk factors for delinquent behavior
(see Table S1 for descriptive statistics). The subscales
measured subdomains of conduct problems (e.g., aggres-
sion and oppositionality/defiance) and other risk factors
(e.g., academic achievement, peer rejection) that have
been associated with severe delinquent behavior in prior
research (Loeber et al. 2008). Multiple TRF items were
averaged to create each subscale (Cronbach alphas

ranged from 0.84 to 0.94). The nine subscales were as
follows: aggression (3 items), oppositionality/defiance (4
items), hyperactivity/impulsivity (5 items), inattention (6
items), dysregulated anger (4 items), interpersonal cal-
lousness (8 items), peer rejection (4 items), poor aca-
demic achievement (2 items), and negative attitude to-
ward school (3 items). Relative to the TRF externalizing
items, this predictor set had the advantages of (a) tap-
ping into other domains of risk not captured in the
externalizing items and (b) measuring risk factors with
greater reliability than do the individual items. See sup-
plement for citations to past work validating these sub-
scales and confirmatory factor analysis of their structure
in these data.

Outcomes: Serious and Persistent Criminal Offending

Criminal offending was measured using official records
of criminal charges received between the 5th grade as-
sessment and age 30 years. Juvenile criminal charges
were collected from the Allegheny County Juvenile
Court and the Pennsylvania (PA) Juvenile Court
Judges’ Commission. Adult criminal charges were col-
lected by searching records managed by the PA State
Police, PA Clerk of Courts, and the Federal Bureau of
Investigation. Official criminal record searches were
conducted on all study participants.

In order to investigate whether our conclusions were
consistent across different specifications of the target
outcome, a series of different criteria were used to de-
lineate individuals who exhibited a pattern of serious
and persistent criminal behavior. Three target outcomes
were created based on the number of violent charges
(i.e., simple assault, aggravated assault, rape, robbery,
murder, and kidnapping), number of serious charges
(i.e., felony violence or theft), and total number of
charges. For each charge outcome, a cutpoint was cho-
sen that identified (as close as possible) the uppermost
25% of the sample. This cutpoint was chosen to identify
those boys that exhibit a costly, chronic pattern of
offending rather than isolated acts of delinquent behav-
ior, which are relatively common among urban males
living in impoverished environments. (Sensitivity analy-
ses found that conclusions were unchanged when using
more liberal cutpoints [see supplement]). Using this ap-
proach, the target groups were as follows: (1) individ-
uals with 3 or more violent charges (27%), (2) individ-
uals with 3 or more serious charges (27%), and (3)
individuals with 23 or more total charges (28%). A
fourth group was also created consisting of individuals
who met one or more of the three criteria outlined
above (37%). Membership in each of these four groups
was predicted as a binary outcome.
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Data Analysis

All analyses were conducted in R (v3.5.2) (R Core Team
2018).

Handling of Missing Data

Prior to analysis, 34 cases were eliminated because they died
prior to the last criminal record data collection. 99 cases were
eliminated because the families did not participate in the Sth
grade assessment. 15 cases were eliminated because teachers
failed to complete enough items assessing the targeted predic-
tors. Remaining missing data was minimal (0.37% of all item
response values) and each missing value was replaced with
the median on that variable (see supplement for discussion of
why median imputation was preferable to, e.g., multiple im-
putation). The final dataset included 864 (85%) of the original
1012 participants.

Creation of Training and Test Datasets

Prior to analysis, participants were randomly assigned to
one of two mutually exclusive datasets, referred to as
“training” and “test” datasets. Developing and evaluating
a screening method using the same data results in
overfitting, and thus an overestimate of predictive perfor-
mance in future data (Hastie et al. 2009). To avoid this
problem, we randomly assigned participants to the training
set (probability = 0.70) or test set (probability = 0.30). The
choice of a 70/30% split balanced (a) the desire to have as
many cases as possible in the training set to increase the
precision of the predictive model and (b) the need to have
sufficient number of cases remaining for the test set to
produce credible estimates of performance on holdout data
(Hastie et al. 2009). The training set was used to develop
and select the predictive models using repeated 10-fold
cross-validation; the test set was used to evaluate the pre-
dictive performance of the final models in holdout data.

Sum-Score Approach

The predictive performance of logistic and machine learn-
ing models was contrasted with traditional sum-score
screening approaches. For the predictor set comprising
the TRF externalizing items, the sum-score risk score was
the TRF total externalizing problems z-score, which is a
function of the summed responses to each item. For the
predictor set comprising the risk factor subscales, the
sum-score risk score was calculated as the sum of the stan-
dardized values (i.e., z-scores) on each of the nine
subscales.

@ Springer

Logistic Regression

Logistic regression models were used to examine whether
screening performance was improved when components
of the risk score were differentially weighted. We fit lo-
gistic models (a) using all items from the TRF external-
izing scale as separate predictors and (b) using the risk
factor subscales as separate predictors. Logistic models
were fit to the training data for each delinquency out-
come. Coefficients were saved and then applied to the test
dataset to evaluate the models' predictive performance.

Machine Learning

Analyses also examined the performance of five different
machine learning algorithms: lasso, random forest, gradient
boosted trees, neural networks, and support vector ma-
chines. These methods have demonstrated success in nu-
merous machine learning applications and represent differ-
ent algorithmic approaches (see supplement, and also
James et al. 2013). Best-practice entails trying multiple
approaches to the same problem and selecting as the final
model that which produces the best performance in the
training dataset (Hastie et al. 2009; Kuhn and Johnson
2013). Thus, although five different machine algorithms
were developed in the training data, only the one that
produced the best cross-validated performance was com-
pared to the sum-score and logistic methods in the test
data.

Machine learning models were developed using a series
of steps performed using the training data (see supplement
for technical detail). For each machine learning model,
optimal values on that algorithm’s “tuning parameters”
were selected based on the results of a repeated 10-fold
cross-validation procedure (10 repeats). Each algorithm has
different tuning parameters that control its functioning. For
example, the lasso algorithm has one tuning parameter: a
value for A, a penalty factor that shrinks the estimated
regression coefficients toward zero. Thus, we evaluated
the performance of a model (i.e., combination of algorithm
and potential tuning values) in the following way. First,
participants in the training dataset were randomly divided
into ten equal-size blocks. Next, the model was estimated
using data from 9 of the 10 blocks, and then tested on the
10th. This was repeated ten times, each time holding out a
different one of the 10 blocks, and the results were aver-
aged together. Thus, the performance of the models was
always evaluated using data from an independent group of
participants, reducing model overfitting.

Predictive performance in training data was evaluated
using the Brier score, which is the mean squared difference
between each participant’s model-predicted probability of
experiencing the outcome and that participant's observed
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outcome (i.e., 0 = did not experience the outcome; 1 =did
experience the outcome). A lower Brier score indicates that
the predicted probabilities are closer to the true probabili-
ties. For each algorithm, the tuning parameter specification
that produced the lowest Brier score metric was used to
generate the final predictive model based on the entire
training dataset. Finally, we chose the algorithm whose
final predictive model produced the lower Brier score in
the training data as the machine learning method to apply
in the test data.

Comparing the Performance of Screening Approaches in Test
(i.e., Holdout) Data

Next, we compared the performance of the three predictive ap-
proaches (i.e., sum-score method, logistic regression, and ma-
chine learning) in the test dataset. For the logistic and machine
learning methods, each participant was assigned a predicted
probability score by inputting their observed values on the pre-
dictors to the final model selected. These probability values were
treated as continuous risk scores for evaluating performance (pre-
dicted probabilities can range 0-1).

Screening methods were compared using two performance
metrics: (1) the area under the receiver operating characteristic
curve (AUROC) and (2) the Brier score. The AUROC indexes
the ability of a test to correctly classify those with and without the
outcome, with a higher AUROC indicating better discrimination
of positive and negative cases (AUROC =0.50 indicates dis-
crimination at the level of random guessing; AUROC =1 indi-
cates perfect discrimination). To verify that our models were
discriminating delinquents from non-delinquents at a rate better
than chance, we tested the null hypothesis that the AUROC was
equal to 0.50 using the Mason and Graham (2002) method. The
Brier score is the mean squared difference between the predicted
probability of the delinquency outcome and the actual outcome.
Because Brier scores are based on predicted probabilities, they
cannot be calculated for sum-score approaches.

To address the primary research question, we tested whether
the AUROC and Brier score values generated by each of the
three screening methods were significantly different. For each
combination of predictor set and outcome, the performance of
the sum-score approach was compared with the logistic
regression and machine learning models, then the performance
of the logistic regression and machine learning models were
compared. The Delong et al. (1988) method was used to compare
AUROC:s and the percentile bootstrap (Davison and Hinkley
1997) was used to compare Brier scores. There were 8 compar-
isons of AUROCS from sum-score vs. logistic regression models,
8 comparisons of AUROCs from sum-score vs. machine learn-
ing models, 8 comparisons of AUROCS from logistic regression
vs. machine learning models, and 8 comparisons of Brier scores
from logistic regression vs. machine learning models. To reduce
concerns about multiple testing, we focus interpretation on the

pattern of results across conditions (i.c., combinations of predic-
tors and outcome) rather than any specific statistical contrast.

Performance Across Screening Cutpoints

Performance measures that use the predicted probabilities or rank
order (e.g., AUROC and Brier score) are more efficient and
robust than metrics that use thresholds to discretize predictions
(e.g., accuracy, sensitivity, specificity). To complement our sta-
tistical comparison of the screening methods using the AUROC
and Brier score, we also descriptively compared their positive
predictive value (PPV) and negative predictive value (NPV)
across a range of screening cutpoints. PPV indicates how often
the children identified as positives (i.e., those to be enrolled in the
intervention) go on to manifest the delinquency outcome. NPV
indicates how often the children identified as negatives (i.e., those
to be excluded from the intervention) go on to not manifest the
delinquency outcome. PPV and NPV of screening algorithms
were estimated via repeated 10-fold cross-validation in the train-
ing data because estimates from the test data would have been
too unstable (e.g., screening 10% of test data into intervention
comprises only 26 youth for the PPV calculation).

Results

See supplement for complete reporting of model performance
(Table S2), model comparisons (Table S3), and the final ma-
chine learning algorithm selected under each condition.

Overall Predictive Performance

Within the test data, AUROC analyses confirmed that every
predictive model discriminated which children would later man-
ifest the delinquency outcome significantly better than chance
(all ps <0.001). AUROCS ranged from 0.68 to 0.78, with a me-
dian value of 0.74. Brier Scores ranged from 0.161 to 0.208, with
a median value of 0.168.

Comparing Sum-Score Methods to Logistic Regression
and Machine Learning

Table 1 reports the AUROC values for the sum-score, logistic
regression, and machine learning models for each combination of
predictor set and outcome. When the predictor set was comprised
of the TRF externalizing problem items, there were no statisti-
cally significant differences between the sum-score method and
the logistic regression or machine learning methods (#s).

In contrast, when the predictor set comprised the risk factor
subscales, there were four (of 8 possible) statistically significant
differences between the sum-score method and the other two
approaches. Both logistic regression and machine learning pro-
duced higher AUROCSs than did the sum-score method
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Table 1:

AUROC in test data for risk scores produced by sum-score, logistic, and machine learning methods

Predictor Set Outcome Variable

Sum-score method
AUROC [95% CI]

Logistic regression
AUROC [95% CI]

Machine learning
AUROC [95% C]]

Risk factor subscales 3+ violent charges

3+ serious charges

23+ total charges

Violent, serious, or total charges
Externalizing problem items 3+ violent charges
3+ serious charges
23+ total charges

Violent, serious or total charges

0.75 [0.69, 0.81]* 0.77[0.71, 0.84] * 0.78 [0.71, 0.84] *
0.73 [0.67, 0.79] * 0.78 [0.72, 0.84] ® 0.78 [0.72, 0.84] ®
0.68 [0.61, 0.75]* 0.74 [0.67, 0.80] ° 0.73 [0.67, 0.80]
0.73 [0.67, 0.79] * 0.75 [0.69, 0.82] * 0.75 [0.69, 0.82] *
0.75 [0.68, 0.81]* 0.73 [0.66, 0.80] * 0.75 [0.69, 0.82] *
0.72 [0.66, 0.79] * 0.73 [0.66, 0.81] * 0.75 [0.69, 0.81] *
0.69 [0.63, 0.76] “° 0.74 [0.67, 0.80] * 0.68 [0.61, 0.76]
0.74 [0.68, 0.80] P 0.69 [0.62, 0.76] * 0.74 [0.67, 0.80] °

Note. Within each row, values that do not share a superscript differ significantly, p <.05.

(p < 0.05) when predicting outcomes involving repeated serious
charges or total charges. Averaging across all models, mean
AUROC was 0.72 for sum-score method, 0.76 for logistic re-
gression, and 0.76 for machine learning algorithms, indicating a
modest advantage of the more complex approaches.

Comparing Logistic Regression to Machine Learning

Tables 1 and 2 report the AUROC and Brier scores of logistic
regression and machine learning models for each combination of
predictor set and outcome. Both the statistical tests (i.e., the p-
values) and the descriptive results (i.e., the means) suggested that
there was no consistent difference in the performance of the two
methods. Logistic regression performed significantly better (i.c.,
higher AUROC and lower Brier score) when predicting the total
charges criterion using the externalizing problem items
(p <0.05). In contrast, machine learning performed significantly
better (i.e., higher AUROC) when predicting which participants
would meet criteria for one or more of the delinquency outcomes
using the externalizing problem items (p < 0.05). Averaging
across all models, the mean performance of logistic regression

Table 2:

was almost identical to that of machine learning on both
AUROC (0.741 vs. 0.746) and Brier score (0.175 vs. 0.176).

Performance Across Screening Cutpoints

Figure 1 shows the positive predictive value (PPV) obtained by
each of the three methods—sum-score, logistic regression, and
machine learning—when between 10 and 50% of children are
screened into the preventive intervention (i.e., across cutpoints
that 10 to 50% of children exceed). When predicting the violent,
serious, and total charges outcomes, PPVs generally ranged be-
tween 40 and 60% and were (as expected) higher when a smaller
proportion of children were screened into the intervention. When
predicting the outcome of meeting any of the three charges
criteria, NPVs generally ranged from 50 to 70% and again were
higher when a smaller proportion of children were screened into
the intervention. Advantages of (a) machine learning and logistic
regression over (b) sum-score methods were most apparent when
predicting the outcome of meeting any of the three charges
criteria, where PPVs were approximately 10 to 20 percentage
points higher when between 10 and 20% of children were
screened into intervention.

Brier Score in test data for risk scores produced by sum-score, logistic, and machine learning methods

Predictor Set Outcome Variable

Sum-score method
Brier Score [95% CI]

Logistic regression
Brier Score [95% CI]

Machine learning
Brier Score [95% CI]

Risk factor subscales 3+ violent charges -
3+ serious charges -
23+ total charges -
Violent, serious, or total charges -
Externalizing problem items 3+ violent charges -
3+ serious charges -
23+ total charges -

Violent, serious or total charges -

0.161[0.138, 0.185]%  0.166 [0.144, 0.189] ®
0.161[0.137,0.185]%  0.163 [0.141, 0.186] *
0.177[0.151,0.205]*  0.174 [0.150, 0.199]
0.193[0.168,0.218]*  0.193 [0.171,0.217]®
0.167[0.141,0.194]*  0.167 [0.144, 0.191]*
0.166[0.138, 0.194]*  0.167 [0.143, 0.192] *
0.168 [0.141,0.198]*  0.184[0.159, 0.210]
0.208 [0.180, 0.239]*  0.194[0.171, 0.219]*

Note. Within each row, values that do not share a superscript differ significantly, p <.05.
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Logistic regression - -- Machine learning

3+ violent charges by age 30
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3+ serious charges by age 30
Base rate: 28 %

23+ total charges by age 30
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Any of three charges criteria
Base rate: 37 %

70%
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Proportion of children screened into intervention

Fig. 1 Positive predictive value (PPV) across screening thresholds, per
repeated 10-fold cross-validation in training data. Values calculated via
repeated 10-fold cross-validation in training data. Positive predictive
value is the probability that when the model predicts a child will go on
to exhibit the delinquency outcome, the child will in fact exhibit that
outcome. Graph shows positive predictive value achieved by each

Figure 2 shows the same for negative predictive value (NPV).
When predicting the violent, serious, and total charges outcomes,
NPVs generally ranged between 75 and 85% and were (as ex-
pected) higher when a larger proportion of children were
screened into the intervention. When predicting the outcome of
meeting any of the three charges criteria, NPVs generally ranged
from 65 to 80% and again were higher when a larger proportion
of children were screened into the intervention. While the NPV
curves for machine learning and logistic regression were higher
than those for sum-score methods in almost all cases, differences
in NPV were very small in magnitude (5% at maximum).

Discussion

Data from a prospective, longitudinal study were used to evaluate
whether logistic regression and/or machine learning algorithms
improved screening for targeted delinquency prevention pro-
grams, relative to traditional sum-score methods. To protect
against overfitting, the performance of logistic and machine
learning methods was tested on an independent holdout sample
using eight different combinations of predictor set and outcome.

screening method across range of proportion of kids screened into
intervention. Results separated by predictor set (rows) and outcome to
be predicted (columns). Each line is constructed by calculating the
positive predictive value and proportion predicted to be positive across
a range of possible cutpoints in the risk score produced by the method
(i.e., the sum score or the predicted probability)

Results indicated that both the logistic and machine learning
methods could improve on traditional sum-score screening ap-
proaches when multiple-domain risk factors were used to predict
repeated criminal offending. However, there was no evidence
that the complex machine learning algorithms provided better
predictive performance than simpler logistic models.

All screening approaches obtained AUROCSs of be-
tween 0.68 and 0.78, indicating that they would correctly
classify a randomly selected pair of delinquent and non-
delinquent boys 68—78% of the time. These AUROC
values were comparable to those obtained in prior studies
predicting violent arrests (Petras et al. 2004; AUROCs up
to 0.74) or diagnoses of Antisocial Personality Disorder
(Petras et al. 2013; AUROCs from 0.62 to 0.71) from
teacher-reported aggression during elementary school.
However, our AUROCs were calculated on holdout data
not used to develop the prediction model, so they will be
lower (and less biased) than the values obtained in past
work that has not maintained this distinction.

More complex methods—Ilogistic regression and machine
learning—performed better than the sum-score approach only
when the risk score was based on multiple-domain risk factor
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Method: — Sum-score - -

Logistic regression - -- Machine learning

3+ violent charges by age 30
Base rate: 28 %

3+ serious charges by age 30
Base rate: 28 %

23+ total charges by age 30
Base rate: 28 %

Any of three charges criteria
Base rate: 37 %

90%

80%

Risk factor subscales

70%

90%

Negative Predictive Value

80%

70%

Externalizing problem items

10%  20%  30%  40%  50%10%  20%  30%  40%

50% 10%

20%  30%  40%  50%10%  20%  30%  40%  50%

Proportion of children screened into intervention

Fig. 2 Negative predictive value (NPV) across screening thresholds, per
repeated 10-fold cross-validation in training data. Values calculated via
repeated 10-fold cross-validation in training data. Negative predictive
value is the probability that when the model predicts a child will not go
on to exhibit the delinquency outcome, the child will in fact not exhibit
that outcome. Graph shows negative predictive value achieved by each

subscales. One potential explanation for this discrepancy is a
key limitation of sum-score approaches raised earlier:
Ancillary risk factors receive equal weighting to primary risk
factors when they are incorporated into the risk score. The risk
factors used in the current study included ancillary risks (e.g.,
school motivation, peer rejection) that were weighted equally
to primary risks (e.g., aggression, interpersonal callousness)
when forming a risk score with the sum-score method. In
contrast, the TRF externalizing problem items were all
assessing the primary risk domain of disruptive behavior prob-
lems, so permitting differential weighting may have had less
impact on screening performance. Thus, logistic regression or
machine learning methods for screening may confer benefit
beyond sum-score approaches when using subscales measur-
ing multiple different risk factors, but not when using item-
level information from a composite scale assessing external-
izing problems.

However, the advantage of the more complex methods was
modest and not universally present. The mean increase in
AUROC was approximately 0.04 (Table 1). The increase in pos-
itive predictive value was in some cases substantial (e.g., of 15—
20% in upper, rightmost panel of Fig. 1), but only across part of
the range of potential cutpoints, and only with certain
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screening method across range of proportion of kids screened into
intervention. Results separated by predictor set (rows) and outcome to
be predicted (columns). Each line is constructed by calculating the
positive predictive value and proportion predicted to be positive across
a range of possible cutpoints in the risk score produced by the method
(i.e., the sum score or the predicted probability)

combinations of predictor set and outcome to be predicted.
There was no substantial increase in negative predictive value.
Thus, whether these methods’ improved screening performance
justifies their increased difficulty of implementation would de-
pend on the specific screening situation at hand. Important factors
would include the relative cost of false positives and false nega-
tives and whether the data needed to develop such an algorithm
(i.e., to find the regression coefficients) are already in existence or
being routinely collected.

Machine Learning vs. Logistic Regression

Although logistic regression provided differential weighting
to risk factors, only machine learning permitted complex com-
binations of non-linear associations and interactive effects be-
tween risk factors. Nonetheless, the machine learning algo-
rithms we evaluated did not perform any better than logistic
models. This finding is consistent with a recent systematic
review of 71 studies comparing clinical prediction models
developed in many different fields of medicine
(Christodoulou et al. 2019). The authors found that when
pooling comparisons at low risk of bias, the mean difference
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Pick best model based
on naive estimate,

report naive estimate report naive estimate

Pick best model based
on cross-validated estimate,

Pick best model based Apply to test data not
on cross-validated estimate, involved in model development
report cross-validated estimate

Method of obtaining performance estimates

Fig. 3 Comparison of four sources of estimates of area under the receiver
operating curve (AUROC). Note Data expanded to show results for best
version of all machine learning models, not just final selected models.
Each point reflects an estimate of AUROC for a specific combination of
predictor set, outcome variable, and algorithm (dots are jittered for
visibility). Red dots were estimated by logistic regression, blue crosses
were estimated by machine learning algorithms. Larger gray circles are

in AUC between logistic regression and the machine learning
algorithm was almost exactly zero.

In our study, perhaps the number of risk factors (i.e., predic-
tors) was insufficient to realize the benefit of machine learning.
The number of constructs measured in the current study was
limited by reliance on teacher report, and the performance of
machine learning may prove superior to logistic methods when
considering a broader set of risk factors (e.g., family functioning,
neighborhood crime) assessed via multiple informants (e.g., par-
ents, youth). Similarly, it is possible that machine learning would
be superior to other methods when predicting offending out-
comes measured in a different way (Jo et al. 2018) or at a differ-
ent point in development.

the mean AUROC for each method of estimation. “Naive” estimates were
estimated by fitting and evaluating the model once using the entire
dataset; “cross-validated” estimates were estimated by fitting and
evaluating the model using internal cross-validation (repeated 10-fold
cross-validation). Estimated AUROCs reported in the manuscript were
calculated using Strategy D

Perhaps the dataset used in the current study was too
small to benefit from machine learning (van der Ploeg
et al. 2014). Our effective sample size was 864 cases, and
after placing 30% of the cases in the test set, this left ap-
proximately 605 cases to fit the model in the training set.
This is a large sample size relative to most psychological
research, but it is small when compared to the many suc-
cessful applications of machine learning in technology or
administrative databases (e.g., datasets with 50k images,
80k insurance claims). There may have been an insufficient
number of cases to reliably recover the non-linear, interac-
tive relationships that machine learning algorithms would (in
theory) be better able to model.
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Perhaps the simplest explanation for our findings is
that additive, weighted effects across risk factors, captures
most of the predictable variance in delinquency outcomes
assessed via criminal records. In other words, there may
not be many strong non-linear, interactive relationships
for the machine learning algorithms to recover (van der
Ploeg et al. 2016). The fact that simpler models often
achieve nearly as good performance as more complicated
ones has been documented in a variety of contexts (Hand
2006; Holte 1993; Jamain and Hand 2008). In fact, in this
study, a simple sum-score performed as well as both lo-
gistic regression and the far more complicated machine
learning methods when predicting offending outcomes
using the externalizing problem items (Dawes 1979;
Wainer 1976).

Although two previous studies have found that ma-
chine learning outperformed logistic regression in
predicting criminal offending outcomes, these studies dif-
fered from the current investigation in several notable
ways. Both were samples of adults (mean age > 30 years)
that had already been arrested for or convicted of a crim-
inal offense, whereas the current sample was a community
sample of children in the 5th grade. Machine learning
may be more potent when predicting re-offense among
active offenders than predicting future offense among
children. Moreover, Kleinberg et al. (2018) developed
their machine learning models using a dataset that includ-
ed more than 200k cases. Thus, the observed advantage
may have been explained by the fact that machine learn-
ing was able to recover complex interactions than was
logistic regression. Neuilly et al. (2011) calculated the
predictive performance of methods using the same data
used to fit the model, compared with our use of estimates
in holdout data. Thus, the observed advantage of machine
learning may have resulted from the algorithm overfitting
the data more than did the logistic regression.

Importance of Appropriate Cross-Validation
of Screening Performance

In contrast to past literature, we used holdout data to es-
timate the predictive performance of all screening models.
Figure 3 shows what would have happened had we used
the more typical approach of evaluating the screening
procedure with the same data used to develop it (call this
the “naive” approach). First, we would have obtained a
severely positively biased impression of how well we can
discriminate delinquent and non-delinquent participants.
The mean AUROC would have been estimated at 0.86
(Fig. 3, Strategy A) instead of the ‘true’ value of 0.74 that
was obtained in holdout data (Fig. 3, Strategy D). Second,
we would have concluded that machine learning provides
dramatic improvements over simpler methods. With more
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flexibility to overfit the data, some machine learning al-
gorithms produced nearly perfect AUROCs in the data
used for model development (Fig. 3, Strategy A) but then
failed to reproduce this predictive success when the model
was applied to new data (Fig. 3, Strategy D). Thus, data
from this study illustrate how the failure to evaluate the
performance of screening procedures using appropriate
cross-validation procedures can lead to false and damag-
ing conclusions (Arlot and Celisse 2010). Data also illus-
trate that internal cross-validation can be a valuable strat-
egy even when holdout data is not practical due to sample
size (cf. Strategy C and Strategy D in Fig. 3).

Limitations

In addition to the limitations already described, the na-
ture of the PYS sample limits the generalizability of our
conclusions. Oversampling for children with conduct
problems increased the base rate of delinquency out-
comes in this sample. However, the metric we used to
compare screening approaches (AUROC) is in theory
independent of the base rate, and sensitivity analyses
confirmed that our screening algorithms performed sim-
ilarly within the lower risk and higher risk portions of
the sample (see supplement). In addition, we have no
reason to believe that the sampling scheme would dif-
ferentially impact the sum-score, logistic regression, or
machine learning methods, leaving their relative screen-
ing performance unaffected.

The PYS sample consisted entirely of boys, and per-
haps machine learning would outperform other screen-
ing methods in a mixed-gender sample (e.g., by permit-
ting gender by risk factor interactions). There was only
one assessment during elementary school that over-
lapped for both cohorts (5th grade), and the relative
performance of screening methods may vary at different
developmental stages (e.g., during early childhood or
adolescence). Finally, the sample was drawn from boys
attending school in one urban city, which might affect
the distributions on risk factors in such a way as to
attenuate or accentuate differences among screening
methods.

Conclusions

How can logistic regression or machine learning ap-
proaches contribute to screening for targeted delinquen-
cy prevention? Our results suggest that both approaches
may improve screening when a broader set of risk fac-
tors are used to generate an overall risk score, but the
improvements are modest and situation-dependent. None
of the complex machine learning methods we evaluated
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was superior to simple logistic regression, suggesting
the latter is preferred. However, the field needs more
studies applying these algorithms in diverse contexts to
fully evaluate the potential benefits of machine learning
(Dwyer et al. 2018). It will be critical to compare the
performance of machine learning models to other
methods using appropriate cross-validation procedures
as these methods may otherwise produce misleading es-
timates of predictive accuracy. There remains a clear
need for strategies that can improve screening for
targeted delinquency prevention, and more work is nec-
essary to determine if machine learning will ultimately
be one of those strategies.
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